K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

Bài 1 

3n + 2 - 2n + 2 + 3n - 2n

= 3n . 32 - 2n . 22 + 3n.1 - 2n.1

= 3n.(9 + 1) - 2n.(4 + 1)

= 3n . 10 - 2n . 5

= 3n . 10 - 2n - 1 . 2 . 5

= 3n . 10 - 2n - 1 . 10

= 10.(3n - 2n - 1)

Vậy với mọi n thì 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10

22 tháng 4 2017

mk thấy bn nên xem lại đề đi. nếu n=1 thì \(6^{2n}+19^n-2^{n+1}\) ko chia hết cho 17

9 tháng 7 2017

62n+19n-2n+1=36n+19n-2n2=(36n-2n)+(19n-2n)=34k+17j chia het 17

vay bt chia het 17

19 tháng 6 2017

Ta có : \(\frac{x+1}{5}=\frac{2x-7}{3}\)

\(\Rightarrow3\left(x+1\right)=5\left(2x-7\right)\)

\(\Leftrightarrow3x+3=10x-35\)

\(\Leftrightarrow3x-10x=-35-3\)

\(\Leftrightarrow-7x=-38\)

\(\Rightarrow x=\frac{38}{7}\)

19 tháng 6 2017

Ta có : \(\frac{x}{4}=\frac{9}{x}\)

\(\Rightarrow x^2=9.4\)

=> x= 36

=> x = +4;-4 

22 tháng 4 2021

 Chia dãy các số nguyên dương từ 1 đến 2020 thành 202 đoạn (1;10) (11;20) ... (2011;2020).

Vì A có 607 số nguyên dương khác nhau chia thành 202 đoạn nên theo nguyên lí Đi - Rich - Lê tồn tại ít nhất 1 đoạn chứa 4 số trong 607 số trên

Vì trong 4 số trên luôn tồn tại 2 số cùng số dư khi chia cho 3 , gọi 2 số đó là x , y ( x > y ) 

suy ra x - y chia hết cho 3

Mà x - y < 9

suy ra x , y thuộc (3;6;9)

4 tháng 5 2016

BÀI4:(Mình chỉ làm bừa thôi nha...ko chắc là đúng)

(1/2)40=1/240

(1/10)12=1/1012

Ta có 240=(210)4=10244

            1012=(103)4=10004

Ta thấy 10244>10004

                =>240>1012

              =>1/240<1/1012

          => (1/2)40<(1/10)12

12 tháng 1 2019

🤦‍♀️🤦‍♀️

BACDH

     +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )

BACDH

  +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )