Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\left(1+3\right)+...+3^{10}\left(1+3\right)\)
\(=4\left(1+...+3^{10}\right)⋮4\)
Ta có :
\(C+3^{101}=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+.....+3^{96}\left(1+3+3^2\right)+3^{99}\left(1+3+3^2\right)\)
\(C+3^{101}=13+3^3.13+.....+3^{96}.13+3^{99}.13\)
=> C+3101 chia hết cho 13
Mặt khác 3101 không chia hết cho 13
=> C không chia hết cho 13
Ta có :
\(C=\left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+....+7^{27}\left(1+3+3^2\right)+7^{30}\)
\(C=57+7^3.57+....+7^{27}.57+7^{30}\)
Mà 7^30 không chia hết cho 57
=> C không chia hết cho 57
Lời giải:
$B=3+(32+33+...+3100)$
$=3+\frac{(3100+32).3069}{2}=3+4806054=4806057$ không chia hết cho $160$
Bạn xem lại đề.