K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2016

 

Hỏi đáp ToánGiả sử 2 góc đối đỉnh đó là xOm và yOn

Ot là phân giác của góc xOm. Ot' là tia đối của tia Ot. cần chứng minh: Ot' là phân giác của góc yOn

Vì Ot; Ot' là 2 tia đối nhau; Ox; Oy là 2 tia đối nhau ; Om; On đối nhau

=> góc xOt = góc yOt' ; góc tOm = góc t'On ﴾ đối đỉnh﴿

Mà góc xOt = góc tOm ﴾do Ot là p/g của góc xOm﴿

=> góc yOt' = góc t'On ; Ot' nằm giữa 2 tia Oy và On

=> Ot' là p/g của góc yOn 

25 tháng 12 2021

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

25 tháng 12 2021

Còn câu b nữa chị ơi

26 tháng 12 2021

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

9 tháng 9 2016

A B C D O E F

Ta có : 

\(\widehat{AOD}\) và \(\widehat{BOC}\)

Kẻ OE là tia p/giác của \(\widehat{BOC}\)

=) \(\widehat{BOE}=\widehat{EOC}\) 

Kẻ OF là tia p/g của \(\widehat{AOD}\)

=) \(\widehat{AOF}=\widehat{OFD}\)

mà \(\widehat{AOD}=\widehat{BOC}\)

=) tia đối của OE là OF cx là tia p/giác của góc đối đỉnh của góc \(\widehat{BOC}\)

24 tháng 7 2019

O x x' y n y' m 1 2 3

Giả sử: \(\widehat{xOy}\) và \(\widehat{x'Oy'}\)là 2 góc đối đỉnh

            Om là tia phân giác của \(\widehat{xOy}\)

           On là tia phân giác của  \(\widehat{x'Oy'}\)

C/m On và Om là 2 tia đối nahu

Vì \(\widehat{xOy}=\widehat{x'Oy'}\)( 2 góc đối đỉnh )

Mà \(\widehat{O_1}=\frac{1}{2}\widehat{xOy}\)(  Om là tia phân giác của \(\widehat{xOy}\))

      \(\widehat{O_3}=\frac{1}{2}\widehat{x'Oy'}\)( On là tia phân giác của  \(\widehat{x'Oy'}\))

\(\Rightarrow\widehat{O_1}=\widehat{O_3}=\frac{1}{2}\widehat{xOy}\)

\(\Rightarrow\widehat{O_1}+\widehat{O_3}=\widehat{xOy}\)

Ta có: \(\widehat{xOy}+\widehat{O_2}=180^o\)( 2 góc kề bù )

Mà \(\widehat{O_1}+\widehat{O_2}+\widehat{O_3}=\widehat{mOn}\)

=> \(\widehat{mOn}=180^o\)

=> Om và On là 2 tia đối nhau

21 tháng 8 2015

Có: góc xOm và yOn đối đỉnh

    Ot; Ot' lần lượt là p/g của góc xOm; yOn

Chứng minh: Ot; Ot' là 2 tia  đối nhau

+) Ot là p/g của góc xOm => góc mOt = $\frac{1}{2}$12 .góc xOm

Ot' là p/g của góc yOn => góc nOt' = $\frac{1}{2}$12 . góc yOn

Mà góc xOm = góc yOn nên góc mOt = nOt'

+) Om; On là 2 tia đối nhau nên Ot nằm giữa 2 tia Om ; On

=> góc mOt + tOn = mOn = 180o

=> nOt' + tOn = 180o

=> góc tOt' = 180o => Ot; Ot; là 2 tia đối nhau

21 tháng 8 2015

Vì OM là tia phân giác của góc AOB nên:
góc AOM=góc MOB
Ta có:góc BOM+góc BON = góc MON=90 độ
Góc AOC=180 độ (góc bẹt)
=>góc AOC-góc MON= góc MOA+góc NOC
Mà góc MOA = góc BOM Nên:
=> góc BON=góc CON
hay ON là tia phân giác của góc BOC

a: Xét ΔAHB vuông tại H và ΔDHB vuông tại H có

HB chung

HA=HD

Do đó: ΔAHB=ΔDHB

b: Xét ΔACH vuông tại H và ΔDCH vuông tại H có

HC chung

HA=HD

Do đó: ΔACH=ΔDCH

Suy ra: \(\widehat{ACH}=\widehat{DCH}\)

hay CB là tia phân giác của góc ACD

25 tháng 2 2018

Bài 3 :

A B C H K I

Gọi gia điểm của các đường trung trực với AB,Ac lần lượt là H ,K

Ta có :AH + HB = AB 

          AK + KC = AC 

mà AB = AC ( tam giác ABC cân tại A)

=> AH + HB = AK + KC

mà  CH và Bk lần lượt là trung trực của AB ,AC 

=> AH = HB = AK = KC

Xét tam giác AHI và tam giác AKI có 

AHI = AKI = 90

AH = AK ( cmt )

AI : cạnh chung 

=> tam giác AHI = tam giác AKI ( canh huyền - cạnh gosc vuông )

=> ^HAI = ^KAI ( 2 góc tương ứng )

=> AI là tia phân giác của ^A

Vậy AI là tia phân giác của ^A

25 tháng 2 2018

Bài 1 

  A B C D E H K

a, Vì tam giác ABC cân tại A => AB = AC và ^ABC = ^ACB

Ta có : ^ABC + ^ABD = 180 (kề bù )

           ^ACB + ^ ACE = 180 ( kề bù )

mà ^ABC = ^ACB 

=> ^ABD = ^ ACE 

Xét tam giác ABD và tam giác ACE có :

AB =AC ( tam giác ABc cân tại a )

^ABD = ^ACE ( cmt )

BD = CE ( gt)

=> tm giác ABD = tam giác ACE ( c.g.c)

=> ^ADB = ^AEC ( 2 góc tương ứng ) 

hay ^HDB = ^KEC 

Xét tam giác HBD và tam gisc KEC có :

^DHB = ^EKC = 90 

BD =  CE (gt)

HDB = KEc ( cmt )

=> tam giác HBD = tam giác KCE ( cạnh huyền - góc nhọn )

=> HB = Ck ( 2 canh tương ứng )

Vậy HB = Ck

b,Xét tam giác ABH và tam giác ACk có 

AHB = AKC = 90

HB = CK ( cmt )

AB = AC 

=> tam giác ABH = tam giác  ACK ( anh huyền - canh góc vuồng )

Vậy tam giác ABH =tam giác ACK

9 tháng 9 2016

x x' y y' O t r'

Giả sử: Vẽ hai đường thẳng xx' và b cắt nhau tại xx'.

Kẻ Ot là tia phân giác \(\widehat{xx'}\)

Và tia Ot' là tia phân giác \(\widehat{yy'}\)

\(\Rightarrow Ox\) nằm giữa \(Ot,Oy\)

Như vậy áp dụng tính chất có:

\(\widehat{tOt'}=\widehat{tOx}+\widehat{xOt'}\)

Mà: \(\widehat{tOx}=\widehat{x'Ot'}\) (\(=\frac{1}{2}\) của hai góc đối đỉnh)

Lại có: Ot' nẵm giữa hai tia Ox và Ox'

 \(\widehat{tOt'}=\widehat{x'Ot'}+\widehat{t'Ox}=\widehat{xOx'}=180^o\) (hai tia đối tạo thành góc có số đó 180 độ)

Vậy: Ot và Ot' đối nhau (đpcm)