Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)
\(\Rightarrow\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
\(\Rightarrow a^2x^2+b^2y^2+c^2z^2+2abxy+2acxz+2bcyz\)\(=a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2\)
\(\Rightarrow b^2x^2-2abxy+a^2y^2+b^2z^2-2bcyz+c^2y^2+a^2z^2-2acxz+c^2x^2=0\)
\(\Rightarrow\left(bx-ay\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}bx-ay=0\\bz-cy=0\\az-cx=0\end{cases}\Rightarrow\hept{\begin{cases}bx=ay\\bz=cy\\az=cx\end{cases}\Rightarrow}\hept{\begin{cases}\frac{b}{y}=\frac{a}{x}\\\frac{b}{y}=\frac{c}{z}\\\frac{a}{x}=\frac{c}{z}\end{cases}\Rightarrow}\frac{a}{x}=\frac{b}{y}=\frac{c}{z}}\)
\(\frac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\Leftrightarrow\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2+2\left(abxy+bcyz+cazx\right)=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)\(\Leftrightarrow a^2y^2-2ay\cdot bx+b^2x^2+b^2z^2-2bz\cdot cy+c^2y^2+a^2z^2-2az\cdot cx+c^2x^2=0\)
\(\Leftrightarrow\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)
mà \(\left(ay-bx\right)^2;\left(bz-cy\right)^2;\left(az-cx\right)^2\ge0\)nên \(\left(ay-bx\right)^2=\left(bz-cy\right)^2=\left(az-cx\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}ay=bx\\bz=cy\\az=cx\end{cases}\Leftrightarrow\frac{a}{x}}=\frac{b}{y}=\frac{c}{z}\left(x,y,z\ne0\right)\)(ĐPCM)
Bạn ko hiểu chỗ nào cứ hỏi lại mình nhé
Do x + y + z = 0 nên
x = - (y + z) ; y = - (x + z) ; z = - (x + y)
=> x2 = (y + z)2 ; y2 = (x + z)2 ; z2 = (x + y)2
=> ax2 + by2 + cz2 = a(y2 + 2yz + z2) + b(x2 + 2xz + z2) + c(x2 + 2xy + y2) = x2(b + c) + y2(a + c) + z2(a + b) + 2(ayz + bxz + cxy) (1)
Thay a = - (b + c) ; b = - (a + c) ; c = - (a + b) (Do a + b + c = 0 ) và ayz+bxz+cxy=0 (do a/x+b/y+c/z=0) vào (1) ta được ax2 + by2 + cz2 = - (ax2 + by2 + cz2)
=> ax2 + by2 + cz2 = 0
Phá ngoặc hết ra rồi phân tích thành tổng 3 bình phương.
Câu hỏi của nguyễn ngọc minh - Toán lớp 8 - Học toán với OnlineMath
nhan 2 ve voi a^2+b^2+c^2 dc toan binh phuong ,lon hon 0 nen x=y=z=0
CÁCH 1: Theo bất đẳng thức Bunhiacopski ta có:
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)
Dấu bằng xảy ra khi và chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
CÁCH 2: Nhân tung tóe cả 2 vế ra(đây cũng là cách CM bất đẳng thức bunhia cho bộ 3 số)
Lời giải:
Đặt $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=t$
$\Rightarrow x=at, y=bt, z=ct$
Khi đó:
$(x^2+y^2+z^2)(a^2+b^2+c^2)=(a^2t^2+b^2t^2+c^2t^2)(a^2+b^2+c^2)$
$=t^2(a^2+b^2+c^2)(a^2+b^2+c^2)$
$=t^2(a^2+b^2+c^2)^2=[t(a^2+b^2+c^2)]^2$
$=(at.a+bt.b+ct.c)^2=(xa+yb+zc)^2$
Ta có đpcm.
Với a; b ; c khác 0
Ta có:
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x^2}{ax}=\frac{y^2}{by}=\frac{z^2}{cz}=\frac{ax}{a^2}=\frac{by}{b^2}=\frac{cz}{c^2}\)(1)
Áp dụng dãy tỉ số bằng nhau:
\(\frac{x^2}{ax}=\frac{y^2}{by}=\frac{z^2}{cz}=\frac{x^2+y^2+z^2}{ax+by+cz}\)(2)
\(\frac{ax}{a^2}=\frac{by}{b^2}=\frac{cz}{c^2}=\frac{ax+by+cz}{a^2+b^2+c^2}\)(3)
Từ (1) ; (2) ; (3)
=> \(\frac{ax+by+cz}{a^2+b^2+c^2}\)\(=\frac{x^2+y^2+z^2}{ax+by+cz}\)
=> \(\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)
Do: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) => \(\frac{x}{a}=\frac{y}{b};\frac{y}{b}=\frac{z}{c};\frac{z}{c}=\frac{x}{a}\)
<=> \(ay=bx;bz=cy;az=cx\)
<=> \(\left(ay-bx\right)=0;bz-cy=0;az-cx=0\)
<=> \(\left(ay-bx\right)^2+\left(yc-bz\right)^2+\left(az-cx\right)^2=0\)
<=> \(a^2y^2+b^2x^2+y^2c^2+b^2z^2+a^2z^2+c^2x^2=2abxy+2bcyz+2cazx\)
<=> \(a^2y^2+b^2x^2+y^2c^2+b^2z^2+a^2z^2+c^2x^2+a^2x^2+b^2y^2+c^2z^2=a^2x^2+b^2y^2+c^2z^2+2abxy+2bcyz+2cazx\)<=> \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)
=> Ta có ĐPCM
biến đổi tương đương thì dài dòng quá
ta có: x/a = y/b =z/c =xa/a^2 =yb/b^2 =zc/c^2 = (ax+by+cz)/(a^2+b^2+c^2)
=>x/a = (ax+by+cz)/(a^2+b^2+c^2) (1)
mặt khác ta có: x/a=y/b=z/c <=> x^2/a^2 =y^2/b^2 =z^2/c^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)
=>x^2/a^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2) (2)
từ (1) và (2) ta => (ax+by+cz)^2/(a^2+b^2+c^2)^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)
=> (x^2+y^2+z^2).(a^2+b^2+c^2)=(ax+by+cz)^2 => đpcm
Chúc bn hok tốt
Ta có:
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Leftrightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)
\(\Leftrightarrow\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2axcz+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)
\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
Vì \(\left(ay-bx\right)^2\ge0;\left(az-cx\right)^2\ge0;\left(bz-cy\right)^2\ge0\) nên
\(\Rightarrow\hept{\begin{cases}\left(ay-bx\right)^2=0\\\left(az-cx\right)^2=0\\\left(bz-cy\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}ay-bx=0\\az-cx=0\\bz-cy=0\end{cases}\Leftrightarrow}\hept{\begin{cases}ay=bx\\az=cx\\bz=cy\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{a}{x}=\frac{c}{z}\\\frac{b}{y}=\frac{c}{z}\end{cases}}\)( Theo tính chất của tỉ lệ thức : tích trung tỉ bằng tích ngoại tỉ)
\(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)( Với x, y, z khác 0)
Vậy \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)Với x, y, z khác 0
Ta có:
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Leftrightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)
\(\Leftrightarrow\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2axcz+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)
\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
Vì \(\left(ay-bx\right)^2\ge0;\left(az-cx\right)^2\ge0;\left(bz-cy\right)^2\ge0\) nên
\(\Rightarrow\hept{\begin{cases}\left(ay-bx\right)^2=0\\\left(az-cx\right)^2=0\\\left(bz-cy\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}ay-bx=0\\az-cx=0\\bz-cy=0\end{cases}\Leftrightarrow}\hept{\begin{cases}ay=bx\\az=cx\\bz=cy\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{a}{x}=\frac{c}{z}\\\frac{b}{y}=\frac{c}{z}\end{cases}}\)( Theo tính chất của tỉ lệ thức : tích trung tỉ bằng tích ngoại tỉ)
\(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)( Với x, y, z khác 0)
Vậy \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)Với x, y, z khác 0