K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

Tính chất cơ bản của phép nhân phân số

17 tháng 3 2020

Thanks bạn

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(\RightarrowĐPCM\)

24 tháng 3 2016

giúp tui phần b bài này

14 tháng 2 2016

Dễ thì trình bày thử coi.

6 tháng 5 2021

       A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101

=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4

=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)

=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101

=> 4A = 99*100*101*102

=> 4A = 101989800

=>   A = 25497450

26 tháng 6 2020

\(A=\frac{1}{5^2}+\frac{2}{5^3}+.....+\frac{99}{5^{100}}\)

\(\Leftrightarrow5A=\frac{1}{5}+\frac{2}{5^2}+......+\frac{99}{5^{99}}\)

\(\Leftrightarrow5A-A=\left(\frac{1}{5}+\frac{2}{5^2}+....+\frac{99}{5^{99}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{99}{5^{100}}\right)\)

\(\Leftrightarrow4A=\frac{1}{5}+\frac{1}{5^2}+......+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)

Đặt : \(H=\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{99}}\)

\(\Leftrightarrow5H=1+\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{98}}\)

\(\Leftrightarrow5H-H=\left(1+\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{98}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\right)\)

\(\Leftrightarrow4H=1-\frac{1}{5^{99}}\)

\(\Leftrightarrow H=\frac{1}{4}-\frac{1}{4.5^{99}}< \frac{1}{4}\)

\(\Leftrightarrow4A< B< \frac{1}{4}\)

\(\Leftrightarrow A< \frac{1}{16}\left(đpcm\right)\)