Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bai 1: Ap dung BDT Bunhiacopxki ta co:
\(ax+by+cz+2\sqrt {(ab+ac+bc)(xy+yz+xz)} \)
\(≤ \sqrt {(a^2+b^2+c^2)(x^2+y^2+z^2)} + \sqrt {(ab+ac+bc)(xy+yz+zx)}+\sqrt {(ab+ac+bc)(xy+yz+zx)}\)
\(≤ \sqrt {(a^2+b^2+c^2+2ab+2ac+2bc)(x^2+y^2+z^2+2xy+2yz+2zx)}\)
\(= (a+b+c)(x+y+z)\)
=> \(Q.E.D\)
Tiep bai 4:Ta co:
BDT <=> \((2+y^2z)(2+z^2x)(2+x^2y)≥(2+x)(2+y)(2+z)\)
Sau khi khai trien con: \(2(z^2x+y^2z+x^2y)+x^2z+z^2y+y^2x≥xy+yz+zx+2x+2y+2z \)
Ap dung BDT Cosi ta co:
\(z^2x+x ≥ 2zx \) <=> \(z^2x≥2zx-x\)
Lam tuong tu ta co: \(2(z^2x+y^2z+x^2y)≥4xy+4yz+4zx-2x-2y-2z \)(1)
\(x^2z+{1\over z}≥2x \) <=> \(x^2z≥2x-xy \) (do xyz=1)
Lam tuong tu ta co: \(x^2z+z^2y+y^2x≥ 2y+2z+2x-xy-yz-zx\)(2)
Cong (1) voi (2) ta co: VT\(≥ 3(xy+yz+zx)\)(*)
Voi cach lam tuong tu ta cung duoc: VT\(≥ 3(x+y+z) \)(**)
Tu (*) va (**) suy ra : \(3 \)VT \(≥ 6(x+y+z)+3(xy+yz+zx) \)
<=> VT \(≥ 2(x+y+z)+xy+yz+zx\)
=> \(Q.E.D\)
Câu 1 chuyên phan bội châu
câu c hà nội
câu g khoa học tự nhiên
câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ
câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)
Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !
Câu c quen thuộc, chém trước:
Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)
Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)
Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)
\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)
Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)
\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)
Done.
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)
\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)
\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)
\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)
Dấu "=" xảy ra khi x=y=z
Mới nghĩ ra 3 câu:
a/ \(\frac{ab}{\sqrt{\left(1-c\right)^2\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1+c\right)}}\le\frac{ab}{2\sqrt{ab\left(1+c\right)}}=\frac{1}{2}\sqrt{\frac{ab}{1+c}}\)
\(\sum\sqrt{\frac{ab}{1+c}}\le\sqrt{2\sum\frac{ab}{1+c}}\)
\(\sum\frac{ab}{1+c}=\sum\frac{ab}{a+c+b+c}\le\frac{1}{4}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{4}\)
c/ \(ab+bc+ca=2abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\Rightarrow x+y+z=2\)
\(VT=\sum\frac{x^3}{\left(2-x\right)^2}\)
Ta có đánh giá: \(\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\) \(\forall x\in\left(0;2\right)\)
\(\Leftrightarrow2x^3\ge\left(2x-1\right)\left(x^2-4x+4\right)\)
\(\Leftrightarrow9x^2-12x+4\ge0\Leftrightarrow\left(3x-2\right)^2\ge0\)
d/ Ta có đánh giá: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)
Akai Haruma, Nguyễn Ngọc Lộc , @tth_new, @Băng Băng 2k6, @Trần Thanh Phương, @Nguyễn Việt Lâm
Mn giúp e vs ạ! Thanks!
câu này mik vừa làm sáng ngày ne
ta đặt \(\sqrt{x^2-2014}=a;\sqrt{y^2-2014}=b;\sqrt{z^2-2014}=c\)
ta có \(ab+bc+ca=2014\Rightarrow ab+bc+ca+a^2=x^2-2014+2014=x^2\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)=x^2\)
tương tự ta có \(\left(b+c\right)\left(b+a\right)=y^2;\left(c+a\right)\left(c+b\right)=z^2\)
nhân cả 3 vào ta có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=xyz\)
=> \(\hept{\begin{cases}\left(a+b\right)z^2=xyz\\\left(b+c\right)x^2=xyz\\\left(c+a\right)y^2=xyz\end{cases}\Rightarrow\hept{\begin{cases}a+b=\frac{xy}{z}\\b+c=\frac{yz}{x}\\c+a=\frac{zx}{y}\end{cases}}}\)
cậu nhân tung A ra rồi thay \(\frac{xy}{z};\frac{yz}{x};\frac{zx}{y}\) như vừa tính vào thì cậu sẽ ra kết quả là A=4028
1/ Không mất tính tổng quát, giả sử \(a\ge b\ge c\text{ và }x\ge y\ge z\)
Ta sẽ chứng minh \(ax+by+cz\ge\frac{1}{3}\left(a+b+c\right)\left(x+y+z\right)\)(Thấy giông giống BĐT Chebyshev nhưng không biết có phải không nên ko dám áp dụng, chứng minh cho chắc:D)
\(\Leftrightarrow3ax+3by+3cz\ge\left(a+b+c\right)\left(x+y+z\right)\)
\(\Leftrightarrow2\left(ax+by+cz\right)\ge a\left(y+z\right)+b\left(z+x\right)+c\left(x+y\right)\)
\(\Leftrightarrow\left(2x-y-z\right)a+\left(2y-z-x\right)b+\left(2z-x-y\right)c\ge0\)
\(\Leftrightarrow\left(2x-y-z\right)a-\left[\left(2x-y-z\right)+\left(2z-x-y\right)\right]b+\left(2z-x-y\right)c\ge0\)
\(\Leftrightarrow\left(2x-y-z\right)\left(a-b\right)+\left(2z-x-y\right)\left(c-b\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(a-b\right)+\left(x-z\right)\left(a-c\right)+\left(y-z\right)\left(b-c\right)\ge0\) (Đúng do giả sử)
Như vậy: \(VT\ge\frac{1}{3}\left(a+b+c\right)\left(x+y+z\right)+\sqrt{\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)}\)
\(\ge\frac{1}{3}\left(a+b+c\right)\left(x+y+z\right)+\sqrt{\frac{\left(a+b+c\right)^2\left(x+y+z\right)^2}{9}}=\frac{2}{3}\left(a+b+c\right)\left(x+y+z\right)=VP\)
Ta có đpcm.
Is that true? Em không chắc ở cái bổ đề ban đầu, khi biến đổi có thể làm lộn, nhưng em lại ngại làm kỹ nên em đã làm tắt:v
Bài 1 nếu tự nhiên ép \(x\ge y\ge z \) đồng thời\(a\ge b \ge c\) thì lời giải rất vô duyên. Có thể làm cách khá như sau
Nếu đặt \(t=\sqrt{\frac{x^2+y^2+z^2}{a^2+b^2+c^2}}\) và giả sử \(\left(x,y,z\right)=\left(tp,tq,tr\right)\) thì ta có \(a^2+b^2+c^2=p^2+q^2+r^2\)
Khi đó cần cm \(ap+bq+cr+a^2+b^2+c^2\ge\frac{2}{3}\left(a+b+c\right)\left(p+q+r\right)\)
\(\Leftrightarrow\frac{4}{3}\left(a+b+c\right)\left(p+q+r\right)\le\left(a+p\right)^2+\left(b+q\right)^2+\left(c+r\right)^2\left(\text{*}\right)\)
Dùng bdt \(ab\le\frac{\left(a+b\right)^2}{4}\) và \(\frac{\left(a+b+c\right)^2}{3}\le a^2+b^2+c^2\) ta có:
\(VT\left(\text{*}\right)\le\frac{\left(a+b+c+p+q+r\right)^2}{3}\le\left(a+p\right)^2+\left(b+q\right)^2+\left(c+r\right)^2=VP\left(\text{*}\right)\)
34, Quảng Ninh
Cho x;y;z > 0 thỏa mãn x + y + z < 1
Tìm GTNN của biểu thức \(P=\frac{1}{x^2+y^2+z^2}+\frac{2019}{xy+yz+zx}\)
Ta có bđt sau : \(\frac{m^2}{a}+\frac{n^2}{b}\ge\frac{\left(m+n\right)^2}{a+b}\left(a;b>0\right)\)
Áp dụng ta được \(P=\frac{1}{x^2+y^2+z^2}+\frac{2019}{xy+yz+zx}\)
\(=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}+\frac{2017}{xy+yz+zx}\)
\(\ge\frac{\left(1+2\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}+\frac{2017}{\frac{\left(x+y+z\right)^2}{3}}\)
\(=\frac{9}{\left(x+y+z\right)^2}+\frac{6051}{\left(x+y+z\right)^2}\)
\(=\frac{6060}{\left(x+y+z\right)^2}\ge\frac{6060}{1}=6060\)
Dấu "=" tại x = y = z = 1/3
39, Chuyên Hưng Yên
Với x;y là các số thực thỏa mãn \(\left(x+2\right)\left(y-1\right)=\frac{9}{4}\)
Tìm \(A_{min}=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)
Ta có \(A=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)
\(=\sqrt{\left(x+1\right)^4+1}+\sqrt{\left(y-2\right)^4+1}\)
Đặt \(\hept{\begin{cases}x+1=a\\y-2=b\end{cases}}\)
Thì \(A=\sqrt{a^4+1}+\sqrt{b^4+1}\)và giả thiết đã cho trở thành \(\left(a+1\right)\left(b+1\right)=\frac{9}{2}\)
Ta có bất đẳng thức \(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\)(1)
Thật vậy
\(\left(1\right)\Leftrightarrow x^2+y^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}+z^2+t^2\ge x^2+2xz+z^2+y^2+2yt+t^2\)
\(\Leftrightarrow\sqrt{x^2z^2+x^2t^2+y^2z^2+y^2t^2}\ge xz+yt\)
*Nếu xz + yt < 0 thì bđt luôn đúng
*Nếu xz + yt > 0 thì bđt tương đương với
\(x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2z^2+2xyzt+y^2t^2\)
\(\Leftrightarrow x^2t^2-2xyzt+y^2z^2\ge0\)
\(\Leftrightarrow\left(xt-yz\right)^2\ge0\)(Luôn đúng)
Vậy bđt (1) được chứng minh
Áp dụng (1) ta được \(A=\sqrt{a^4+1}+\sqrt{b^4+1}\ge\sqrt{\left(a^2+b^2\right)^2+\left(1+1\right)^2}\)
\(=\sqrt{\left(a^2+b^2\right)^2+4}\)
Ta có \(\left(a+1\right)\left(b+1\right)=\frac{9}{4}\)
\(\Leftrightarrow ab+a+b+1=\frac{9}{4}\)
\(\Leftrightarrow ab+a+b=\frac{5}{4}\)
Áp dụng bđt Cô-si có \(a^2+b^2\ge2ab\)
\(2\left(a^2+\frac{1}{4}\right)\ge2a\)
\(2\left(b^2+\frac{1}{4}\right)\ge2b\)
Cộng 3 vế vào được
\(3\left(a^2+b^2\right)+1\ge2\left(ab+a+b\right)=\frac{5}{2}\)
\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)
Khi đó \(A\ge\sqrt{\left(a^2+b^2\right)^2+4}\ge\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{3}\)
Dấu ''=" tại \(\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}x+1=\frac{1}{2}\\y-2=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{5}{2}\end{cases}}\)
Bài 2 : đã cm bên kia
Bài 1: :|
we had điều này:
\(2=\frac{2014}{x}+\frac{2014}{y}+\frac{2014}{z}\)
\(\Leftrightarrow\frac{x-2014}{x}+\frac{y-2014}{y}+\frac{z-204}{z}=1\)
Xòng! bunyakovsky
P/s : Bệnh lười kinh niên tái phát nên ít khi ol sorry :<