K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 
Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{k}{3k+1}\)

\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{k}{3k+1}\)

Do đó: \(\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)

c: \(\dfrac{2a+3b}{2a-3b}=\dfrac{2\cdot bk+3b}{2\cdot bk-3b}=\dfrac{2k+3}{2k-3}\)

\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{2k+3}{2k-3}\)

Do đó: \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)

31 tháng 10 2021

\(\left\{{}\begin{matrix}a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=0\\-\dfrac{b}{2a}=1\\-\dfrac{b^2-4ac}{4a}=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c=0\\b=-2a\\b^2-4ac=16a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b+c=0\\b=-2a\\4a^2-4ac=16a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c=0\\b=-2a\\a-c=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b+c=0\\b=-2a\\c=a-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+2a+a-4=0\\b=-2a\\c=a-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-3\end{matrix}\right.\)

15 tháng 6 2018

Bài 1:

Ta có: \(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}=\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\)

Áp dụng bđt Cauchy Schwarz có:

\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8bc}+c\sqrt{c^2+8bc}}\)

Lại sử dụng bđt Cauchy schwarz ta có:

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\cdot\sqrt{a^3+8abc}+\sqrt{b}\cdot\sqrt{b^3+8abc}+\sqrt{c}\cdot\sqrt{c^3+8abc}\ge\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}}=\sqrt{\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}}\)

=> Ta cần chứng minh: \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)

hay \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Áp dụng bđt Cosi ta có:

\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)

Nhân các vế của 3 bđt trên ta đc:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)

=> Đpcm

25 tháng 9 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\)

\(=\dfrac{a^2}{ab+2ac+3ad}+\dfrac{b^2}{bc+2bd+3ab}+\dfrac{c^2}{cd+2ac+3bc}+\dfrac{d^2}{ad+2bd+3cd}\)

\(\ge\dfrac{\left(a+b+c+d\right)^2}{4\left(ab+ad+bc+bd+ca+cd\right)}\ge\dfrac{\left(a+b+c+d\right)^2}{\dfrac{3}{2}\left(a+b+c+d\right)^2}=\dfrac{2}{3}\)

*Chứng minh \(4\left(ab+ad+bc+bd+ca+cd\right)\le\dfrac{3}{2}\left(a+b+c+d\right)^2\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(a-c\right)^2+\left(c-d\right)^2\ge0\)

25 tháng 9 2017

Làm lại lun ._.

Câu 1 : Trong các mệnh đề sau , tìm mệnh nào sai ? A. A∈A B. ∅∈A C. A⊂A D. A≠{A} Câu 2 : Trong các tập hợp sau , tập hợp nào khác rỗng ? A. A={ x ∈ R | x2 + x +1 =0 } B. B ={ x ∈ Q | x2 - 2 = 0 } C . C ={ x ∈ Q | ( x3 - 3)(x2 +1) = 0 } D. D = { x ∈ N | x(x2+3) = 0 } Câu 3 : Cho tập hợp A = { x∈ R | x4 - 6x2 + 8 =0 } . Các phần tử của A là : A . A={2; \(\sqrt{2}\)} B . A={ -2; \(-\sqrt{2}\)} C . A={ \(\sqrt{2}\); -2} D . A={ 2;-2;\(-\sqrt{2}\);\(\sqrt{2}\)} Câu 4 : Cho...
Đọc tiếp

Câu 1 : Trong các mệnh đề sau , tìm mệnh nào sai ? A. A∈A B. ∅∈A C. A⊂A D. A≠{A} Câu 2 : Trong các tập hợp sau , tập hợp nào khác rỗng ? A. A={ x ∈ R | x2 + x +1 =0 } B. B ={ x ∈ Q | x2 - 2 = 0 } C . C ={ x ∈ Q | ( x3 - 3)(x2 +1) = 0 } D. D = { x ∈ N | x(x2+3) = 0 } Câu 3 : Cho tập hợp A = { x∈ R | x4 - 6x2 + 8 =0 } . Các phần tử của A là : A . A={2; \(\sqrt{2}\)} B . A={ -2; \(-\sqrt{2}\)} C . A={ \(\sqrt{2}\); -2} D . A={ 2;-2;\(-\sqrt{2}\);\(\sqrt{2}\)} Câu 4 : Cho A={ x∈R : x +2 ≥ 0} ; B ={ x∈R : 5 - x ≥ 0 } . Khi đó A\ B và A giao B là ? Câu 5 : Cho A ={x ∈ R | ( x2 -1)(x2 + 2 )=0} . Các phần tử của tập A là : A. A={1;-1} B. A={-1} C. A={ 1;-1;\(\sqrt{2}\);\(-\sqrt{2}\)} D. A ={1} Câu 7 : Các phần tử của tập hợp A ={ x∈ R | 2x2 - 5x +3 =0 } là : A. A={0} B. A={1} C. A={\(\frac{3}{2}\)} D. A ={ 1 ; \(\frac{3}{2}\)}

;

0
25 tháng 1 2021

a) Ta có:

\(a^2+b^2+c^2\ge ab+bc+ca\)

 \(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{9}\ge\dfrac{\left(ab+bc+ca\right)}{3}\)

\(\Leftrightarrow\dfrac{a+b+c}{3}\ge\sqrt{\dfrac{ab+bc+ca}{3}}\)

Đẳng thức xảy ra khi $a=b=c.$

b) BĐT \(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

Hay là \(2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\),

đúng.

Đẳng thức xảy ra khi $a=b=c.$

c) \(\Leftrightarrow\dfrac{\left(x^2+2\right)^2}{x^2+1}\ge4\Leftrightarrow x^4+4x^2+4\ge4x^2+4\Leftrightarrow x^4\ge0\)

Đẳng thức xảy ra khi $x=0.$

d) Xét hiệu hai vế đi bạn.

25 tháng 1 2021

Chứng minh:

a, \(a^3+b^3+c^3\dfrac{>}{ }3abc\)

b,\(abc\dfrac{< }{ }\left(\dfrac{a+b+c}{3}\right)^3\)

c,\(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\dfrac{< }{ }a+b+c\)

d,\(\dfrac{a}{b+c}+\dfrac{c}{a+b}+\dfrac{b}{a+c}\dfrac{>}{ }\dfrac{3}{2}\left(a,b,c>0\right)\)

16 tháng 8 2019

Làm tạm một câu rồi đi chơi, lát làm cho.

4)

Áp dụng bất đẳng thức Cauchy-Schwarz :

\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

16 tháng 8 2019

2/ Cô: \(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a.a.b}{b.b.c}}=3\sqrt[3]{\frac{a^3}{abc}}=\frac{3a}{\sqrt[3]{abc}}\)

Tương tự hai BĐT còn lại và cộng theo vế thu được:

\(3.VT\ge3.VP\Rightarrow VT\ge VP^{\left(Đpcm\right)}\)

Đẳng thức xảy ra khi a = b= c

2 tháng 2 2017

Thử Cauchy Schwarz dạng Engel xem

3 tháng 2 2017

vãi linh hồn... tử lũy thừa 3 c-s = mắt

8 tháng 11 2018

1) \(\dfrac{x}{3}=\dfrac{y}{4}=t\Leftrightarrow\left\{{}\begin{matrix}x=3t\\y=4t\end{matrix}\right.\)

ta có \(x.y^2=324\Leftrightarrow3t.\left(4t\right)^2=324\)

\(\Leftrightarrow t^3=\dfrac{27}{4}\)

\(\Leftrightarrow t=\dfrac{3}{\sqrt[3]{4}}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3.\dfrac{3}{\sqrt[3]{4}}=\dfrac{9}{\sqrt[3]{4}}\\y=4.\dfrac{3}{\sqrt[3]{4}}=\dfrac{12}{\sqrt[3]{4}}\end{matrix}\right.\)

2) \(2^{x+1}.3^y=2^{2x}.3^x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

3) \(\dfrac{a}{b}=\dfrac{c}{d}\)

áp dụng dãy tỉ số = nhau ta có

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-c}{b-d}\)

\(\Leftrightarrow\dfrac{a^4}{b^4}=\dfrac{c^4}{d^4}=\left(\dfrac{a-c}{b-d}\right)^4\left(1\right)\)

\(\dfrac{a^4}{b^4}=\dfrac{c^4}{d^4}=\dfrac{a^4+c^4}{b^4+c^4}\left(2\right)\)

từ (1)(2) suy ra đpcm

4) \(B=\dfrac{27^{15}.5^3.8^4}{25^2.81^{11}.2^{11}}=\dfrac{\left(3^3\right)^{15}.5^3.\left(2^3\right)^4}{\left(5^2\right)^2.\left(3^4\right)^{11}.2^{11}}=\dfrac{3^{45}.5^3.2^{12}}{5^4.3^{44}.2^{11}}=\dfrac{3.2}{5}=\dfrac{6}{5}\)

24 tháng 9 2021

\(A=\left\{-2;0;2;4;8\right\}\\ B=\left\{-2;-1;0;1;2\right\}\\ \left(x^2-2x-3\right)\left(x^2-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\Leftrightarrow C=\left\{-\sqrt{3};-1;\sqrt{3};3\right\}\)

\(a,A\cap\left(B\cap C\right)=A\cap\left\{-1\right\}=\varnothing\\ b,A\cup\left(B\cap C\right)=A\cup\left\{-1\right\}=\left\{-2;-1;0;2;4;8\right\}\\ c,câu.a.làm.r\\ d,A\backslash\left(B\cap C\right)=A\backslash\left\{-1\right\}=\left\{-2;0;2;4;8\right\}\\ e,A\backslash\left(B\C\right)=A\backslash\left\{-2;0;1;2\right\}=\left\{4;8\right\}\)

24 tháng 9 2021

Bằng một cách vi diệu nào đó tôi lại thấy chữ C ở dòng cuối có màu đỏ :v