Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a: Xét ΔDBI có \(\widehat{DIB}=\widehat{DBI}\)
nên ΔDBI cân tại D
hay DI=DB
b: Xét ΔCEI có \(\widehat{EIC}=\widehat{ECI}\)
nên ΔEIC cân tại E
c:Ta có: DI+IE=DE
nên DE=BD+CE
B1: Giải:
Vì DE song song với BC => góc DIB= góc IBC (SLT).Mà góc IBC=góc DBI (BI là (p/g của góc ABC ) => góc DBI=góc DIB theo định lý => tam DIB cân tại D=>DB=DI.
Vì DE song song với BC=>góc EIC = góc ICB (SLT). Mà góc ECI =góc ICB ( CI là p/g của của góc ECB) theo định lý => tam giác IEC cân tại E=>EI=EC.
Vì DE=DB+IE. Mà DI = DB;IE=EC=>DE=DB+CE
Vậy : DE=DB+CE
Ta có: DI // BC (giả thiết)
Suy ra:∠I1 =∠B1(so le trong) (1)
Lại có:∠B1 =∠B2 (2)
(vì BI là tia phân giác góc ABC)
Từ (1) và (2) suy ra:∠I1 =∠B2
=>∆BDI cân tại D =>BD=DI (3)
Mà IE // BC (gt) => ∠I2 =∠C1 (so le trong) (4)
Đồng thời: ∠C1=∠C2 (vì CI là phân giác của góc ACB) (5)
Từ (4) và (5) suy ra: ∠I2=∠C2. Suy ra ∠CEI cân tại E
Suy ra: CE = EI (6)
Từ (3) và (6) suy ra: BD + CE = DI + EI = DE