Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường cao AH vuông góc với BC tại H,HI vuông góc AC tại I
=>\(\Delta AHI,\Delta AHC\)có\(90^0=\widehat{A}+\widehat{AHI}=\widehat{A}+\widehat{C}\Rightarrow\widehat{AHI}=\widehat{C}\)
\(\Delta ABC\)có\(\widehat{C}=180^0-\widehat{B}-\widehat{BAC}=180^0-75^0-65^0=40^0\)mà\(\widehat{AHI}=\widehat{C}\left(cmt\right)\Rightarrow\widehat{AHI}=40^0\)
hình như
sai đề rùi bạn
ạ mình
cũng ko biết
rõ đâu nhưng đề
thấy là lạ
Mình chỉ vẽ hình cho bn dễ hình dung để làm thôi nên đừng bảo mik lười ~~
~ Hok tốt ~
#Blvck
a: Xét ΔAHE vuông tại E và ΔAHI vuông tại I có
AH chung
\(\widehat{EAH}=\widehat{IAH}\)
Do đó: ΔAHE=ΔAHI
Xét ΔAHN có
AE là đường cao
AE là đường trung tuyến
Do đó: ΔAHN cân tại A
b: Ta có: HN=2HE
HM=2HI
mà HE=HI
nên HN=HM
Xét ΔAHM có
AI là đường cao
AI là đường trung tuyến
DO đó: ΔAHM cân tại A
=>AH=AM=AN
Ta có: AM=AN
HM=HN
Do đó: AH là đường trung trực của MN