Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABD và ΔACE có
AD=AE
góc D=góc E
DB=EC
=>ΔABD=ΔACE
=>AB=AC
=>ΔABC cân tại A
b: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc MAB=góc NAC
=>ΔAMB=ΔANC
=>BM=CN
c: góc IBC=góc MBD
góc ICB=góc NCE
mà góc MBD=góc NCE
nên góc ICB=góc IBC
=>ΔIBC cân tại I
a) Xét \(\Delta ABD\) và \(\Delta ACE\) ,có :
AD = AE ( Tam giác ADE cân tại A )
\(\widehat{ADE}=\widehat{AED}\) ( Tam giác ADE cân tại A )
BD = CE ( gt )
=> \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)
=> AB = AC
=> \(\Delta ABC\) cân tại A
b) Xét \(\Delta BMD\) và \(\Delta CNE\) ,có :
BD = CE ( gt )
\(\widehat{BMD}=\widehat{CNE}=90^0\)
\(\widehat{ADE}=\widehat{AED}\) ( Tam giác ADE cân tại A ) => \(\Delta BMD=\Delta CNE\left(ch-gn\right)\) => BM = CN c) Ta có : \(\widehat{MBD}=\widehat{NCE}\) ( \(\Delta BMD=\Delta CNE\) ) mà \(\widehat{MBD}=\widehat{IBC},\widehat{NCE}=\widehat{ICB}\) ( 2 góc đối đỉnh ) => \(\widehat{IBC}=\widehat{ICB}\) => Tam giác IBC cân tại I d) \(\Delta IAB=\Delta IAC\left(c.c.c\right)\) => \(\widehat{IAB}=\widehat{IAC}\) => AI là tia phân giác của góc BACa) Xét ∆ADE cân tại A nên góc D = góc E
Xét ∆ABD và ∆ACE, ta có:
AD = AE (gt)
góc D = góc E (chứng minh trên)
DB = EC (gt)
Suy ra: ∆ABD = ∆ACE (c.g.c)
Suy ra: AB = AC (hai cạnh tương ứng)
Vậy ∆ABC cân tại A.
b) Xét hai tam giác vuông BMD và CNE, ta có:
góc BMD=góc CNE=90o
BD = CE (gt)
góc D = góc E (chứng minh trên)
Suy ra: ∆BMD = ∆CNE (cạnh huyền, góc nhọn)
Suy ra: BM = CN (hai cạnh tương ứng)
c) Ta có: ∆BMD = ∆CNE (chứng minh trên)
Suy ra: góc DBM=góc ECN (hai góc tương ứng)
góc DBM=góc IBC (đối đỉnh)
góc ECN = góc ICB (đối đỉnh)
Suy ra: góc IBC=góc ICB hay ∆IBC cân tại I.
d) Xét ∆ABI và ∆ACI, ta có:
AB = AC (chứng minh trên)
IB = IC (vì ∆IBC cân tại I)
AI cạnh chung
Suy ra: ∆ABI = ∆ACI (c.c.c) ⇒ góc BAI=góc CAI (hai góc tương ứng)
Vậy AI là tia phân giác của góc BAC
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
b: Xét ΔABE và ΔACD có
AB=AC
góc A chung
AE=AD
=>ΔABE=ΔACD
c: Xét ΔIDB và ΔIEC có
góc IDB=góc IEC
DB=EC
góc IBD=góc ICE
=>ΔIDB=ΔIEC
d: Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
=>ΔABI=ΔACI
=>góc BAI=góc CAI
=>AI là phân giác của góc BAC
tu ve hinh :
a, tamgiac ADE can tai A (gt)
=> AD = AE va goc ADE = goc AED (dn)
xet tamgiac ADB va tamgiac AEC co : DB = CE (gt)
=> tamgiac ADB = tamgiac AEC (c - g - c)
=> AB = AC (dn)
=> tamgiac ABC can tai A (dn)
b, xet tamgiac DMB va tamgiac ENC co :
goc DMB = goc ENC = 90o do MB | AD va CN | AE (gt)
goc ADE = goc AED (cau a)
DB = CE (gt)
=> tamgiac DMB = tamgiac ENC (ch - gn)
=> BM = CN (dn)
a: Xét ΔADB và ΔAEC có
AB=AC
\(\widehat{ADB}=\widehat{AEC}\)
DB=EC
Do đó: ΔADB=ΔAEC
Suy ra: AB=AC
hay ΔABC cân tại A
b: Xét ΔMBD vuông tại M và ΔNCE vuông tại N có
BD=CE
\(\widehat{MDB}=\widehat{NEC}\)
Do đó: ΔMBD=ΔNCE
Suy ra: BM=CN
c: \(\widehat{IBC}=\widehat{MBD}\)(đối đỉnh)
\(\widehat{ICB}=\widehat{NCE}\)
mà \(\widehat{MBD}=\widehat{NCE}\)(ΔMBD=ΔNCE)
nên \(\widehat{IBC}=\widehat{ICB}\)
hay ΔIBC cân tại I
thiếu đề bn ơi
thiếu gì bn