K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: Xét ΔABC có

\(\dfrac{BM}{AB}=\dfrac{CN}{AC}\)

Do đó: MN//BC

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

b: Ta có: \(\widehat{B}=\widehat{C}=\dfrac{180^0-40^0}{2}=70^0\)

\(\widehat{BMN}=\widehat{CNM}=180^0-70^0=110^0\)

1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và...
Đọc tiếp

1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.

2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang

3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.

4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và BD=BC.

a) tính các góc của hình thang

b) biết AB=5 cm. tính CD

5.Cho hình thang vuông ABCD có góc A= góc D = 900, đường chéo BD vuông góc với cạnh bên BC và BD=BC.

a) tính các góc của hình thang

b) biết AB=3cm. tính độ dài các cạnh BC,CD.

6. Hình thang cân ABCD có AB//CD, AB<CD. Kẻ hai đường cao AH, BK.

a) chứng minh ằng HD=KC.

7. Cho tam giác cân ABC (AB=AC), phân giác BD,CE.

a) tú giác BEDC là hình gì?Vì sao?

b)Chứng minh BE=ED=DC.

c) biết góc A=500. Tính các góc của tứ giác BEDC.

8. cho tam giác đều ABC, hai đường cao BN,CM

a) chứng minh tứ giác BMNC là hình thang cân

b) Tính chu vi của hình thang BMNC là hình thang cân

3
7 tháng 6 2015

dài thế bạn nản luôn oi

7 tháng 6 2015

làm đc câu ào thì đc đâu nhất thiết phải làm hết chỉ là mik đưa mấy bài đóa để mấy bn chỉ đc bài nào thì chỉ thôi mà

25 tháng 7 2016

+ Ta có

MN//BC => BMNC là hình thang (theo định nghĩa)

Ta m giác ABC cân tại A => ^ABC = ^ACB

=> BMNC là hình thang cân

+ Xét tam giác MBI có

^MIB = ^IBC (góc so le trong) (1)

^IBC = ^IBM (BI là phân giác ^B) (2)

Từ (1) và (2) => tam giác MBI cân tại M => MI = MB (*)

+ Xét tam giác NCI chứng minh tương tự ta cũng có NI = NC (**)

Từ (*) và (**) => MI + NI = MB + NC => MN = MB + NC (dpcm)

a) Xét ΔABC có 

\(\dfrac{BM}{AB}=\dfrac{CN}{AC}\left(BM=CN;AB=AC\right)\)

nên MN//BC(Định lí Ta lét đảo)

Xét tứ giác BMNC có MN//BC(cmt)

nên BMNC là hình thang

Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BMNC là hình thang cân

b) \(\widehat{B}=\widehat{C}=\dfrac{180^0-40^0}{2}=70^0\)

\(\Leftrightarrow\widehat{BMN}=\widehat{MNC}=180^0-70^0=110^0\)

 e chưa học định lí ta let

 

17 tháng 6 2017
a, ta co ∆ABC can =>gocAMN=180°- goc A/2(1) Lai co ∆ ABC la ∆ can =>ABC =180°- goc A/2(2) Tu (1) va (2) => goc AMN=goc ABC b,theo cau a, goc AMN = ABC Ma 2 goc nay o vi tri dong vi =>MN//BC Lai co goc B= goc C (gt) =>tu giac BMNC la hthang can c,ta co BMNC la hthang can =>B=C=40° Vi goc B+M=180°(bu nhau) =>M= 180-40°=120°= goc N
20 tháng 10 2021

a: Xét ΔABC có 

\(\dfrac{BM}{AB}=\dfrac{CN}{AC}\)

Do đó: MN//BC

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

26 tháng 10 2022

Bài 2: 

a: Xét ΔAEC vuông tại E và ΔADB vuông tại D có

AB=AC

góc A chung

Do đó: ΔAEC=ΔADB

b: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

=>BEDC là hình thang

mà góc EBC=góc DCB

nên BEDC là hình thang cân