Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 3S= 3^2+3+...+3^1990+3^1991
- S=3+3^2...+3^1990
2S=3^1991-3
À mà nó có chia hết cho 4 và 10 đâu?
\(s=3+3^2+3^3+...+3^{1990}\)
\(S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{1989}+3^{1990}\right)\)
\(S=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{1989}\left(1+3\right)\)
\(S=3.4+3^3.4+...+3^{1989}.4\)
\(S=4.\left(3+3^3+...+3^{1989}\right)⋮4\)
Vậy S chia hết cho 4
1
ta có 72=9,8 và UCLN(8,9)=1
SUY RA x269y chia hết 8 suy ra 69y cia hết cho 8 nên y = 6
nếu y=6 ta có x2696 chia hết cho 9 suy ra x+23 chia hết cho 9 mà 0<x<9 nên x=4
vậy x=4 và y=6
2
a, do 10 là số chăn nên nâng mũ mấy lên cũng là số chẵn suy 10 ^2002 chia hết co 2
ta có 2^2002 =100...00 suy 1 ko chia hết cho 3 nên 10^2002 ko chia hết cho 3
b, ta có 10^2017 +1=100..00 +1 suy ra 2 ko chia hết cho 9
mấy bài còn lại cux dễ tự làm đi nha lê
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
b2
\(A=16^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\left(2^5+1\right)\)
\(=2^{13}.4.33\)
\(=2^{13}.132⋮132\)
Vậy S chia hết cho 132
Có \(16^5⋮4\)
\(2^{15}⋮4\)
\(\Rightarrow A⋮4\)(1)
Có \(16^5=\left(2^4\right)^5=2^{4.5}=2^{20}\)
Thay vào A\(\Rightarrow A=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.31\)
\(\Rightarrow A⋮33\)(2)\
Từ (1) và (2)\(\Rightarrow A⋮132\)