Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+3+3^2+3^3+...+3^8+3^9\)
\(=1+3+3^2\left(1+3\right)+...+3^8\left(1+3\right)\)
\(=4\left(1+3^2+...+3^8\right)⋮4\)
\(S=\left(1+3\right)+3^2\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+3^2+...+3^8\right)⋮4\)
\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)
\(S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+\left(3^6+3^7\right)+\left(3^8+3^9\right)\)
\(S=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+3^8\left(1+3\right)\)
\(S=4+3^2.4+3^4.4+3^6.4+3^8.4\)
\(S=4\left(3^2+3^4+3^6+3^8\right)\)
\(4⋮4\\ \Rightarrow4\left(3^2+3^4+3^6+3^8\right)⋮4\\ \Rightarrow S⋮4\)
\(S=1.\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)
\(S=4x\left(1+3^2+...+3^8\right)\)
Vì 4 chia hết cho 4 nên S chia hết cho 4
\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)
\(=13\left(1+...+3^7\right)⋮13\)
S=1+3+3^2+...+3^34=>S=(1+3+3^2+...+3^4)+...+(3^30+3^31+3^32+...+3^34)(1 cặp 4 số)=121+...+3^30(1+3+3^2+...+3^4)=121+...+3^30. 121.
mà 121 chia hết cho11=>S chia hết cho 11
S=1+3+3^2+...+3^34=1+(3+3^2)+...+(3^33+3^34)(1 cặp 2 số)=1+12+...+3^32(3+3^2)=1+12+...+3^32.12=1+12(1+...+3^32)
mà 12 chia hết cho 4=>S/4 dư 1
S=1+3+3^2+...+3^34=1+3+9+(27+81+3^5+3^6)+...(3^31+...+3^34)(nhóm 1 cặp 4 số)=13+...0+..+...0(các số trong nhóm có chữ số tận cùng =0)=...3=>S=...3
a) \(S=1+3+3^2+3^3+...+3^{49}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)
\(=1\left(1+3\right)+3^2\left(1+3\right)+...+3^{48}\left(1+3\right)\)
\(=1.4+3^2.4+...+3^{48}.4\)
\(=\left(3+1\right)\left(1+3^2+...3^{48}\right)=4\left(1+3^2+...+3^{48}\right)⋮4^{\left(đpcm\right)}\)
b) Ta có: \(S=1+3+3^2+3^3+...+3^{49}\)
\(3S=3+3^2+3^3+...+3^{49}+3^{50}\)
\(3S-S=2S=3^{50}-1\Rightarrow S=\frac{3^{50}-1}{2}\)
Ta thấy: \(3^{50}=3^{4.12}.3^2=\left(3^4\right)^{12}.3^2=81^{12}.9=...9\) (tận cùng là 9)
Suy ra \(3^{50}-1=\left(...9\right)-1=...8\) (tận cùng là 8)
Suy ra \(\Rightarrow S=\frac{3^{50}-1}{2}=\frac{\left(...8\right)}{2}=...4\Rightarrow S\) tận cùng là 4
a) \(S=1+3+3^2+3^3+...+3^{49}\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+....+\left(3^{48}+3^{49}\right)\)
\(S=4+\left(3^2.1+3^2.3\right)+....+\left(3^{48}.1+3^{48}.3\right)\)
\(S=4+3^2.\left(1+3\right)+...+3^{48}.\left(1+3\right)\)
\(S=1.4+3^2.4+...+3^{48}.4\)
\(S=\left(1+3^2+...+3^{48}\right).4⋮4\)
S = \(\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{48}+3^{49}\right)\)
= \(4+3^2.\left(1+3\right)+3^4.\left(1+3\right)+...+3^{48}.\left(1+3\right)\)
= \(4+3^2.4+3^4.4+...+3^{48}.4\)
= \(4.\left(1+3^2+3^4+...+3^{48}\right)\text{ chia hết cho 4}\)
=> S chia hết cho 4 (đpcm).
b. Chưa rõ.
c. S = \(1+3+3^2+3^3+...+3^{49}\)
=> 3S = \(3.\left(1+3+3^2+3^3+...+3^{49}\right)\)
=> 3S = \(3+3^2+3^3+3^4+...+3^{50}\)
=> 3S - S = \(\left(3+3^2+3^3+3^4+...+3^{50}\right)-\left(1+3+3^2+3^3+...+3^{49}\right)\)
=> 2S = \(3^{50}-1\)
=> S = \(\frac{3^{50}-1}{2}\left(\text{đpcm}\right)\).
minh hiền bạn làm đúng rùi mong bạn sớm làm được phần b chúc học giỏ