K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2022

Bài 3: 

a: Xét ΔCDF vuông tại C và ΔBCE vuông tại B có

CD=BC

CF=BE

Do đó: ΔCDF=ΔBCE
=>góc CDF=góc BCE

=>góc BCE+góc MFC=góc DFC+góc CDF=90 độ

=>CE vuông góc với DF

b: Gọi Klà trung điểm của CD và N là giao của AK và DF

Xét tứ giác AECK có

AE//CK

AE=CK

Do dó: AECK là hình bình hành

SUy ra: AK=CE và AK//CE

=>AK vuông góc với DF

Xét ΔDMC có

K là trung điểm của DC

KN//MC

Do đó: N là trung điểm của DM

Xét ΔAMD có

AN vừa là đường cao, vừa là đường trung tuyến

nên ΔAMD cân tại A

24 tháng 2 2018

Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.

14 tháng 11 2019

c) BM , AF , CE đồng quy

15 tháng 11 2019

Nguồn: loigiaihay.com

Bài 1:

\(AD=AB\) (vì \(ABCD\) là hình vuông).

=> \(AM=AB\left(đpcm\right).\)

Chúc bạn học tốt!

a) Ta có: ABCD là hình vuông

nên DB là tia phân giác của \(\widehat{ADC}\)

\(\Leftrightarrow\widehat{ADB}=\widehat{CDB}=45^0\)

hay \(\widehat{FDM}=45^0\)

Xét ΔMFD vuông tại F có \(\widehat{FDM}=45^0\)(cmt)

nên ΔMFD vuông cân tại F

Suy ra: FM=FD(1)

Xét tứ giác AEMF có 

\(\widehat{EAF}=90^0\)

\(\widehat{AFM}=90^0\)

\(\widehat{AEM}=90^0\)

Do đó: AEMF là hình chữ nhật

Suy ra: AE=MF(2)

Từ (1) và (2) suy ra AE=DF

Xét ΔAED vuông tại A và ΔDFC vuông tại F có 

AE=DF

AD=DC

Do đó: ΔAED=ΔDFC

Suy ra: DE=CF

8 tháng 8 2021

a, AEMF là hình chữ nhật nên AE=FM

ΔDFM vuông cân tại suy ra FM=DF

⇒AE=DFsuy ra ΔADE=ΔDCF

⇒DE=CF

 

b, Tương tự câu a, dễ thấy AF=BE

⇒ΔABF=ΔBCE

⇒ABF^=BCE^ nên BF vuông góc CE

Gọi là giao điểm của BFvà DE

⇒H là trực tâm của tam giác CEF

Gọi là giao điểm của BCvà MF

CN=DF=AEvà MN=EM=AF

ΔAEF=ΔCMN

⇒ˆAEF=ˆMCN

⇒CM⊥EF

28 tháng 11 2016

Gọi I là giao điểm của DE và CF

MFA = FAE = AEM = 900

=> AEMF là hình chữ nhật

BD là tia phân giác của hình vuông ABCD

=> EBM = 450

mà tam giác EBM vuông tại E

=> Tam giác EBM vuông cân tại E

=> EB = EM

mà EM = AF (AEMF là hình chữ nhật)

=> FA = EB

mà AD = AB (ABCD là hình chữ nhật)

=> AB - EB = AD - FA

=> AE = FD

Xét tam giác EAD và tam giác FDC có:

EA = FD (chứng minh trên)

EAD = FDC (= 900)

AD = DC (ABCD là hình chữ nhật)

=> Tam giác EAD = Tam giác FDC (c.g.c)

=> ADE = DCF (2 góc tương ứng)

mà AED = CDE (2 góc so le trong, AB // CD)

=> ADE + AED = DCF + CDE

mà ADE + AED = 900 (tam giác AED vuông tại A)

=> DCF + CDE = 900

=> Tam giác IDC vuông tại I

=> DE _I_ CF

28 tháng 11 2016

ôi trời ơi, vừa nói lúc chiều là về tạo tk luôn, chứng tỏ dân chơi thời nay là có thật