K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

bạn xem lại đề câu c nhé, mình thấy nó có j đó hơi sai, hình bạn tự vẽ nhá :D

câu a

tam giác def và tam giác hed có

góc edf = góc dhe = 90 độ

chung góc def

=> tam giác def ~ tam giác hed (gg)

câu b

tam giác dfe và tam giác hfd có

góc edf = góc dhf = 90 độ

chung góc f

=> tam giác dfe ~ tam giác hfd (gg)

\(=>\dfrac{df}{hf}=\dfrac{ef}{fd}\\ =>df^2=hf.ef\)

chúc may mắn :)

4 tháng 4 2017

mình cảm ơn

19 tháng 3 2018

D E F 6 9 H

a.

Xét \(\Delta DEF\)\(\Delta HED\) có:

góc D = H = 90o

góc E chung

Do đó: tam giác DEF ~ HED ( g.g)

b.

Xét tam giác FHD và FDE có:

góc F chung

góc H = góc D = 90o

Do đó: tam giác FHD~FDE

=> \(\dfrac{DF}{FH}=\dfrac{EF}{DF}\Rightarrow DF^2=FH.EF\)

19 tháng 3 2018

xét tam giác DEF và tam giác HED có:

góc EDF=EHD(=90 độ)

góc E chung

suy ra hai tam giác này đồng dạng

xét tam giác DEF và HDF có

góc EDF=DHF

suy ra 2 tam giác này đồng dạng

suy ra DF PHẦN EF=FH PHẦN DF

SUY RA DF2=FH*EF

1 tháng 4 2017

a,Xét \(\Delta\)DEF và \(\Delta\)HED có:

góc EDF=góc EHD(=90 độ)

góc E chung

\(\Rightarrow\)\(\Delta\)DEF đồng dạng \(\Delta\)HED(g.g)

b,Xét \(\Delta\)DEF và \(\Delta\)HDF có:

góc EDF=góc DHF(=90 độ)

góc F chung

\(\Rightarrow\)\(\Delta\)DEF đồng dạng \(\Delta\)HDF(g.g)

\(\Rightarrow\)\(\dfrac{DF}{EF}=\dfrac{FH}{DF}\)(đ/n)

\(\Rightarrow\)DF\(^2\)=FH.EF

2 tháng 4 2017

Mk chịu òi

a: Xét tứ giác DAKE có 

AK//DE

AK=DE
Do đó: DAKE là hình bình hành

mà AK=AD

nên DAKE là hình thoi

11 tháng 5 2022

a, Theo định lí Pytago tam giác DEF vuông tại D

\(DF=\sqrt{EF^2-DE^2}=16cm\)

b, Xét tam giác EDF và tam giác DHF có 

^EFD _ chung, ^EDF = ^DHF = 900

Vậy tam giác EDF ~ tam giác DHF (g.g) 

\(\dfrac{EF}{DF}=\dfrac{DF}{HF}\Rightarrow DF^2=EF.HF\)

10 tháng 5 2022

Theo định lí Pytago tam giác DEF vuông tại D

\(DF=\sqrt{EF^2-DE^2}=16cm\)

b, Xét tam giác EDF và tam giác DHF 

^DFE _ chung 

^EDF = ^DHF = 900

Vậy tam giác EDF ~ tam giác DHF (g.g) 

\(\dfrac{EF}{DF}=\dfrac{DF}{HF}\Rightarrow DF^2=EF.HF\)

a: \(DF=\sqrt{20^2-12^2}=16\left(cm\right)\)

b: Xét ΔEDF vuông tại D và ΔDHF vuông tại H có 

góc F chung

Do đó: ΔEDF\(\sim\)ΔDHF

Các bạn giúp mình giải các bài toán này được không, cảm ơn nhìu.Bài 1:Cho hình thang ABCD ( AB//CD) có góc A - góc D=30 độ. Tính các góc còn lại của hình thang cân đó.Bài 2 : Cho hình thoi ABCD có hai đường chéo lần lượt là 12 cm và 16 cm. Tính chu vi của hình thoi đó.Bài 3 : Cho tam giác DEF cân tại D( DE>EF), đường cao DH . Gọi I là trung điểm của DE. K là điểm đối xứng của H qua Ia) Chứng minh tứ...
Đọc tiếp

Các bạn giúp mình giải các bài toán này được không, cảm ơn nhìu.

Bài 1:Cho hình thang ABCD ( AB//CD) có góc A - góc D=30 độ. Tính các góc còn lại của hình thang cân đó.

Bài 2 : Cho hình thoi ABCD có hai đường chéo lần lượt là 12 cm và 16 cm. Tính chu vi của hình thoi đó.

Bài 3 : Cho tam giác DEF cân tại D( DE>EF), đường cao DH . Gọi I là trung điểm của DE. K là điểm đối xứng của H qua I

a) Chứng minh tứ giác DKEH là hình chữ nhật.

b) Nếu tam giác DEF vuông cân tại D thì tứ giác DKEH là hình gì ? Vì sao ? Vẽ hình minh họa.

c) Vẽ CA vuông DF ( A thuộc DF). Chứng minh tam giác AHK là tam giác vuông.

Bài 4 : Cho tam giác DEF, gọi M,N lần lượt là trung điểm của DE, DF. Qua F vẽ đường thẳng song song với DE cắt đường thẳng MN tại K

a) Chứng minh tứ giác MEFK là hình bình hành.

b) Biết MN=5 cm. Tính độ dài EF?

Bài 5: Cho tam giác ABC cân tại A. Gọi H,I lần lượt là trung điểm của BC, AC.

a) Tứ giác HIAB là hình gì ? Vì sao?

b) Gọi Q là điểm đối xứng của H qua I. Chứng minh tứ giác AHCQ là hình chữ nhật.

c) Tìm thêm điều kiện của tam giác ABC cân tại A để tứ giác AHCQ là hình vuông.

0