K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=m\Rightarrow a=bm;c=dm\)

Ta có : \(\dfrac{a.b}{c.d}=\dfrac{b.m.b}{d.m.d}=\dfrac{b^2.m}{d^2.m}=\dfrac{b^2}{d^2}\)(1)

\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bm+b\right)^2}{\left(dm+d\right)^2}=\dfrac{\left[b.\left(m+1\right)\right]^2}{\left[d.\left(m+1\right)\right]^2}=\dfrac{b^2.\left(m+1\right)^2}{d^2.\left(m+1\right)^2}=\dfrac{b^2}{d^2}\)(2)

Từ (1) và (2) suy ra :\(\dfrac{a.b}{c.d}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

Vậy \(\dfrac{a.b}{c.d}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) khi \(\dfrac{a}{b}=\dfrac{c}{d}\)

Đc chưa bạn . Tick cho mk nha!

6 tháng 7 2019

Tạm thời giải phần a đã nhé -_-

a, Từ a/b = c/d => a/c=b/d

Đặt a/c=b/d=k thì a=ck, b=dk

Xét : 4a-3b/4a+3b=4ck-3dk/4ck+3dk=k.(4c-3d)/k.(4c+3d)=4c-3d/4c+3d

=> 4a-3b/4a+3b=4c-3d/4c+3d => 4a-3b/4c-3d=4a+3b/4c+3d

Nhìn trên máy khó lắm viết lại theo lời giải ra nháp trc' cho dễ nhìn nhé @@

6 tháng 7 2019

\(a,\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a-3b}{4c-3d}\)\(\left(1\right)\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a+3b}{4a+3d}\)\(\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{4a-3b}{4c-3d}=\frac{4a+3b}{4c+3d}\left(đpcm\right)\)

\(b\)Đặt \(\frac{a}{c}=\frac{b}{d}=k\)\(\Rightarrow a=ck;b=dk\)

\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{\left(ck\right)^2-\left(dk\right)^2}{c^2-d^2}=\frac{c^2k^2-d^2k^2}{c^2-d^2}=\frac{k^2\left(c^2-d^2\right)}{c^2-d^2}=k^2\)\(\left(3\right)\)

Mà \(\frac{ab}{cd}=\frac{ck.dk}{cd}=k^2\)\(\left(4\right)\)

Từ ( 3 ) và ( 4 ) \(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\left(đpcm\right)\)

\(c,\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\left(5\right)\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\left(6\right)\)

TỪ ( 5 ) và ( 6 ) \(\Rightarrow\frac{a-b}{c-d}=\frac{2a+5b}{2c+5d}\left(đpcm\right)\)

19 tháng 10 2021

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\\ \dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\dfrac{b^2}{d^2}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

16 tháng 7 2015

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)

Thay vào từng vế ta có 

     \(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)

     \(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => ĐPCM

23 tháng 9 2017

a/b=c/d 
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có : 
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2 
=>   a/c.b/d= ( a+b/c+d ) mũ 2 
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2 
=> dpcm

21 tháng 11 2016

Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có: \(\frac{a.b}{c.d}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (1)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2}{d^2}\) (2)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\) (3)

Từ (1), (2) và (3) suy ra \(\frac{a.b}{c.d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)

21 tháng 11 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)

ta có: \(\frac{a.b}{c.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{b^2.k^2+2b^2.k+b^2}{d^2.k^2+2d^2.k+d^2}=\frac{b^2}{d^2}\left(2\right)\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2}{d^2}\left(3\right)\)

từ 1,2 và 3 ta có điều phải chứng minh

4 tháng 10 2019

vì -1 hơn 1 hai số cho nên;

a) a/b và c/d ^2 =ab/cd hơn kém nhau 2

b) dựa theo tính chất kết hợp (a+b/c+d ) ^3 = a ^3 ...