Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có góc ABE bằng góc ACI vì cùng phụ với góc AEB
\(\Delta ABE=\Delta ACI\left(g.c.g\right)\) \(\Rightarrow\hept{\begin{cases}BE=CI\\AE=AI\end{cases}\Rightarrow AI=AD\left(=AE\right)}\) Suy ra A là trung điểm của DI
Mà AN sng song DM song song CI nên theo địnhlí về đường trung bình của hình thang suy ra MN=NC
tự kẻ hình
a, có D đx D qua DI
I đx I qua DI
E đx C qua DI (gt)
=> tam giác EID = tam giác CID (đl)
=> góc IED = góc ICD (đn) (1)
AB // DC (gt) mà ABI slt IEC
=> góc ABI = góc IEC (đl) (2)
(1)(2) => góc ABI = góc ICD (tcbc)
có AIB + góc ABI = 90 do ...
góc CID + góc ICD = 90 do ...
góc IAB = IDC (gt)
=> góc AIB = góc CID
b, F đối xứng cái gì cơ
Bài 1:
a) Gọi giao điểm của CI và BE là F
⇒CF⊥BE tại F
Ta có: ΔCEF vuông tại F(CF⊥BE, F∈BE)
nên \(\widehat{FCE}+\widehat{CEF}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ACI}=90^0-\widehat{FEC}\)
mà \(\widehat{FEC}=\widehat{AEB}\)(hai góc đối đỉnh)
nên \(\widehat{ACI}=90^0-\widehat{AEB}\)(1)
Ta có: ΔAEB vuông tại A(CA⊥BA, E∈AC)
nên \(\widehat{ABE}+\widehat{AEB}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{ABE}=90^0-\widehat{AEB}\)(2)
Từ (1) và (2) suy ra \(\widehat{ACI}=\widehat{ABE}\)
Xét ΔACI vuông tại A và ΔABE vuông tại A có
AC=AB(ΔABC vuông cân tại A)
\(\widehat{ACI}=\widehat{ABE}\)(cmt)
Do đó: ΔACI=ΔABE(cạnh góc vuông-góc nhọn kề)
⇒CI=BE(hai cạnh tương ứng)(đpcm1)
b) Ta có: ΔACI=ΔABE(cmt)
⇒AI=AE(hai cạnh tương ứng)
mà AD=AE(gt)
nên AI=AD
mà A,I,D thẳng hàng
nên A là trung điểm của ID
Ta có: CI⊥BE(gt)
MD⊥BE(gt)
NA⊥BE(gt)
Do đó: CI//MD//NA(định lí 1 từ vuông góc tới song song)
Xét tứ giác MDIC có MD//CI(cmt)
nên MDIC là hình thang có hai đáy là MD và CI(định nghĩa hình thang)
Xét hình thang MDIC(MD//CI) có
A là trung điểm của cạnh bên ID(cmt)
AN//MD//CI(cmt)
Do đó: N là trung điểm của CM(định lí 3 về đường trung bình của hình thang)
⇒NM=NC(đpcm2)