K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 1 2018

Bài 1:

Ta viết lại phương trình đường thẳng BC:

\(x+3y+7=0\Leftrightarrow y=\frac{-1}{3}x-\frac{7}{3}\)

Gọi PT đường thẳng $AH$ là: \(y=ax+b\)

Vì \(AH\perp BC\Rightarrow a.\frac{-1}{3}=-1\) \(\Leftrightarrow a=3\)

\(\Rightarrow AH: y=3x+b\) (1)

Giao điểm của $AC$ với $AB$ chính là $A$. Do đó tọa độ điểm $A$ thỏa mãn: \(\left\{\begin{matrix} 2x-3y-1=0\\ 5x-2y+1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{-5}{11}\\ y=\frac{-7}{11}\end{matrix}\right.\) (2)

Từ (1); (2):\(\Rightarrow \frac{-7}{11}=3.\frac{-5}{11}+b\Leftrightarrow b=\frac{8}{11}\)

Do đó PT đường thẳng AH là:

\(y=3x+\frac{8}{11}\)\(\Leftrightarrow 3x-y+\frac{8}{11}=0\)

 

 

 

 

 

 

AH
Akai Haruma
Giáo viên
20 tháng 1 2018

Bài 2:

Gọi tọa độ của điểm M là \((a,b)\)

\(M\in (d)\Rightarrow a-b+2=0(1)\)

M cách đều hai điểm E. F

\(\Leftrightarrow ME=MF\)

\(\Leftrightarrow ME^2=MF^2\Leftrightarrow (a-0)^2+(b-4)^2=(a-4)^2+(b+9)^2\)

\(\Leftrightarrow 81-8a+26b=0\) (2)

Từ (1); (2) suy ra \(\left\{\begin{matrix} a=\frac{-133}{18}\\ b=\frac{-97}{18}\end{matrix}\right.\)

Vậy tọa độ điểm \(M=(\frac{-133}{18}; \frac{-97}{18})\)

13 tháng 12 2017

Ta có, AB và AC cắt nhau tại A nên tọa độ đỉnh A là nghiệm của hệ phương trình :

x − 3 y − 1 = 0 5 x − 2 y + 1 = 0 ⇒ A − 5 13 ; − 6 13

Đường thẳng BC có VTPT n B C →    ( 1 ; 3 ) .

 Vì A H ​ ⊥ B C ​  nên đường thẳng AH nhận vecto n B C →    ( 1 ; 3 ) làm VTCP, một VTPT của AH là:  n A H → (    3 ;    − 1 )

Phương trình đường cao AH của tam giác là:

3 x + 5 13 − y + 6 13 = 0 ⇔ 39 x − 13 y + 9 = 0

ĐÁP ÁN B

9 tháng 1 2016

Tìm tọa độ điểm A 
Ta có: AB ∩ AC = A 
=>Tọa độ điểm A là nghiệm hệ 
{ 2x-3y-1=0 <=> { x = -5/11 => A(-5/11;-7/11) 
{ 5x-2y+1=0`````````{ y = -7/11 
♣Đương cao qua đỉnh A 
Gọi (d) là đường cao qua đỉnh A 
Vì (d) _|_ BC =>phương trình (d) dạng: 3x - y + m = 0 
Vì A € (d) => 3.(-5/11) + 7/11 + m = 0 <=> m = 8/11 
Vậy pt (d): 3x - y + 8/11 = 0 <=> 33x - 11y + 8 = 0 
``````````````````` 
Bài 2a:Gọi (d') là đường thẳng đối xứng với (d) qua M 
A(x;y) € (d) và B(x';y') là điểm đối xứng với A(x;y) qua M 
=>B(x';y') € (d') 
Vì M là trung điểm của AB 
=>{ (x+x' )/2 = 2 =>{ x = 4 - x' 
````{ (y+y' )/2 = 1 ````{ y = 2 - y' 
=>A(4-x';2-y') 
Vì A € (d) => 4-x' - (2 - y' ) = 0 <=> x' - y' - 2 = 0 
Vậy pt (d'): x - y - 2 =0 ok

13 tháng 1 2016

Tìm tọa độ điểm A 
Ta có: AB ∩ AC = A 
=>Tọa độ điểm A là nghiệm hệ 
{ 2x-3y-1=0 <=> { x = -5/11 => A(-5/11;-7/11) 
{ 5x-2y+1=0`````````{ y = -7/11 
Đương cao qua đỉnh A 
Gọi (d) là đường cao qua đỉnh A 
Vì (d) _|_ BC =>phương trình (d) dạng: 3x - y + m = 0 
Vì A € (d) => 3.(-5/11) + 7/11 + m = 0 <=> m = 8/11 
Vậy pt (d): 3x - y + 8/11 = 0 <=> 33x - 11y + 8 = 0 

tick dung cho em nhé

14 tháng 1 2016

=o tick cho minh nhehihi

10 tháng 1 2016

hinh

NM
31 tháng 3 2022

ta có tọa độ B là nghiệm của hệ \(\hept{\begin{cases}x-2=0\\2x+3y=1\end{cases}\Leftrightarrow B\left(2;-1\right)}\)

Từ I kẻ d' qua I và song song với BC khi đó \(d':x=-7\)

Khi đó d' cắt AC tại điểm K có tọa độ là \(\hept{\begin{cases}x=-7\\2x+3y=1\end{cases}\Leftrightarrow}K\left(-7;5\right)\), gọi H là trung điểm của BC

khi đó điểm A thuộc trung trực của KI là đường thẳng AH: \(y=1\)Do đó tọa độ A là : \(A\left(-1;1\right)\)

Do đó đường cao từ C có VTPT \(IA=\left(6,4\right)\)nên đường cao từ C là : \(3x+2y-4=0\)