K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

A B C M N 100

a) +Xét tam giác ABC cân tại A có \(\widehat{A}\)= 100o

=>\(\widehat{B}=\widehat{C}=40^o\)

TT ta có: Tam giác AMN cân(AM=AN) tại A có\(\widehat{A}\)=100o

=>\(\widehat{AMN}=\widehat{ANM}=40^o\)

=>\(\widehat{B}=\widehat{C}\)\(=\widehat{AMN}=\widehat{ANM}\)

=>\(\widehat{B}=\widehat{AMN}\)

Mà hai góc này đồng vị =>MN//BC

+Xét tam giác AMC và tam giác ANB có:

AM=AN

 chung

AC=AB

Do đó tam giác AMC= tam giác ANB(c.g.c)

Suy ra BN=CM(hai cạnh t.ứ)

Bài 2 để tí mik lm tiếp, mik đag bận, bạn tích mik để mik có cái để tl tiếp nhé

Chúc học tốt

a) Vì là tam giác cân nên 2 góc ở đáy bằng nhau, góc ở đáy là : \(\left(180^0-50^0\right)\div2=65^0\)

b) Vì \(\Delta ABC\) đều \(\Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=180^0\div3=60^0\).Có  \(BM=CM=1,5\left(cm\right)\)

 \(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\Rightarrow\widehat{AMC}=\widehat{AMB}\). Mà 2 góc kề bù \(\Rightarrow\widehat{AMC}=\widehat{AMB}=90^0\)

Vì \(\Rightarrow\widehat{AMB}=90^0\Rightarrow\Delta AMB\) có \(AM^2=AB^2+BM^2\). Thay số. ta có :

\\(AM^2=3^2+1,5^2=9+2,25=11,25\Rightarrow AM=\sqrt{11,25}\)

 c)  Vì là tam giác cân nên 2 góc ở đáy bằng nhau, góc ở đỉnh là : \(180^0-\left(50^0.2\right)=80^0\)

24 tháng 2 2020

b) \(AM^2+MB^2=AB^2\)

\(\Rightarrow AM=\sqrt{AB^2-MB^2}=\sqrt{3^2-1,5^2}=\sqrt{6,75}\)

học lại đinhl ý pytago nha Vũ Cao Minh⁀ᶦᵈᵒᶫ ( Cool Team )

1) Ta có: ΔABC cân tại A(gt)

nên \(\widehat{B}=\widehat{C}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của các góc ở đáy trong ΔABC cân tại A)(1)

\(\Leftrightarrow\widehat{B}=\widehat{C}=\dfrac{180^0-50^0}{2}=65^0\)

Vậy: \(\widehat{B}=65^0\)\(\widehat{C}=65^0\)

2) Xét ΔADE có AD=AE(gt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

\(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADE cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{ADE}=\widehat{ABC}\)

mà \(\widehat{ADE}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên DE//BC(Dấu hiệu nhận biết hai đường thẳng song song)

3) Ta có: AD+DB=AB(D nằm giữa A và B)

AE+EC=AC(E nằm giữa A và C)

mà AB=AC(ΔABC cân tại A)

và AD=AE(gt)

nên DB=EC

Xét ΔDBC và ΔECB có 

DB=EC(cmt)

\(\widehat{DBC}=\widehat{ECB}\)(cmt)

BC chung

Do đó: ΔDBC=ΔECB(c-g-c)

⇒CD=BE(hai cạnh tương ứng)

4) Ta có: ΔDBC=ΔECB(cmt)

nên \(\widehat{DCB}=\widehat{EBC}\)(hai góc tương ứng)

hay \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)

Ta có: \(\widehat{OBC}=\widehat{OCB}\)(cmt)

mà \(\widehat{OBC}=\widehat{OED}\)(hai góc so le trong, DE//BC)

và \(\widehat{OCB}=\widehat{ODE}\)(hai góc so le trong, DE//BC)

nên \(\widehat{ODE}=\widehat{OED}\)

Xét ΔODE có \(\widehat{ODE}=\widehat{OED}\)(cmt)

nên ΔODE cân tại O(Định lí đảo của tam giác cân)

20 tháng 1 2021
Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

3 tháng 12 2016

a) Ta có góc ở đáy của tam giác cân bằng 50 độ. Do đó tổng của hai góc đáy của tam giác cân bằng 50.2=100độ. Góc ở đỉnh bằng 180-100=80 độ

b) Ta có góc đỉnh của tam giác câ là 70 độ. Do đó mỗi góc ở đáy bằng (180-70):2=55 độ

c) góc B= góc C=(180-A):2

9 tháng 12 2016

bạn học rồi hả?

10 tháng 3 2020

Tính chất của tam giác cân: 2 góc ở đáy thì bằng nhau

Vậy góc ở đáy còn lại là: 500

Vậy góc ở đỉnh là: 180 - (50+50) = 180- 100 = 80

Vậy góc ở đỉnh là 800

31 tháng 5 2017

Hình vẽ:

A B C K H O 1 2 1 2

Giải:

Xét \(\Delta ABH\)\(\Delta ACK\) có:

\(AH=AK\left(gt\right)\)

\(\widehat{A}\) là góc chung

\(AB=AC\) ( Vì \(\Delta ABC\) cân tại \(A\) )

Do đó: \(\Delta ABH=\Delta ACK\left(c.g.c\right)\)

\(\Rightarrow\widehat{B_2}=\widehat{C_2}\) ( cặp góc tương ứng )

\(\widehat{B}=\widehat{C}\) ( Do \(\Delta ABC\) cân tại \(A\) )

\(\Rightarrow\widehat{B}-\widehat{B_2}=\widehat{C}-\widehat{C_2}\)

\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)

\(\Rightarrow\Delta OBC\) cân tại \(O\) . \(\left(đpcm\right)\)