K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2018

\(\left(2^5\right)^n.\left(2^4\right)^n=\left(2^9\right)^n=2^9\)

\(=>n=1\)

\(3< 3^n< 3^5\)

\(=>3^n=\left\{3^2,3^3,3^4\right\}\)

\(=>n=2,3,4\)

14 tháng 7 2019

1. Ta có: \(x\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)

=> \(x\left(6-x\right)^{2003}-\left(6-x\right)^{2003}=0\)

=> \(\left(6-x\right)^{2003}\left(x-1\right)=0\)

=> \(\orbr{\begin{cases}\left(6-x\right)^{2003}=0\\x-1=0\end{cases}}\)

=> \(\orbr{\begin{cases}6-x=0\\x=1\end{cases}}\)

=> \(\orbr{\begin{cases}x=6\\x=1\end{cases}}\)

14 tháng 7 2019

Bài 2. Ta có: (3x - 5)100 \(\ge\)\(\forall\)x

       (2y + 1)100 \(\ge\)\(\forall\)y

=> (3x - 5)100 + (2y + 1)100 \(\ge\)\(\forall\)x;y

Dấu "=" xảy ra khi: \(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}}\) => \(\hept{\begin{cases}3x=5\\2y=-1\end{cases}}\) => \(\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{1}{2}\end{cases}}\)

Vậy ...

25 tháng 7 2017

143. a) \(-6x^n.y^n.\left(-\dfrac{1}{18}x^{2-n}+\dfrac{1}{72}y^{5-n}\right)\)

\(=-6.\left(-\dfrac{1}{18}\right)x^n.x^{2-n}.y^n+\left(-6\right).\dfrac{1}{27}x^n.y^n.y^{5-n}\)

\(=\dfrac{1}{3}x^{n+2-n}y^n-\dfrac{2}{9}x^n.y^{n+5-n}\)

\(=\dfrac{1}{3}x^2y^n-\dfrac{2}{9}x^ny^5\)

b) Ta có: \(\left(5x^2-2y^2-2xy\right)\left(-xy-x^2+7y^2\right)\)

\(=5x^2\left(-xy\right)+5x^2.\left(-x^2\right)+5x^2.7y^2-2y^2.\left(-xy\right)-2y^2.\left(-x^2\right)-2y^2.7y^2-2xy.\left(-xy\right)-2xy\left(-x^2\right)-2xy.7y^2\)

\(=-5x^3y-5x^4+35x^2y^2+2xy^3+2x^2y^2-14y^4+2x^2y^2+2x^3y-14xy^3\)

Rút gọn các đa thức đồng dạng, ta có kết quả:

\(-5x^4-3x^3y+39x^2y^2-12xy^3-14y^4\)

Kết quả đã được xếp theo lũy thừa giảm dần của x

Câu 1:

Ta có: \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)

\(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2=\left(x-1\right)^x\cdot\left(x-1\right)^4\)

\(\Leftrightarrow\left(x-1\right)^2=\left(x-1\right)^4\)

\(\Leftrightarrow\left(x-1\right)^2-\left(x-1\right)^4=0\)

\(\Leftrightarrow\left(x-1\right)^2\cdot\left[1-\left(x-1\right)^2\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\cdot\left[1-\left(x-1\right)\right]\cdot\left[1+\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\cdot\left(1-x+1\right)\cdot\left(1+x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\cdot\left(2-x\right)\cdot x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\2-x=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x=2\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)

Vậy: x\(\in\){0;1;2}

Câu 2:

Ta có: \(\left(x+2\right)^2\ge0\forall x\)

\(\left(y-3\right)^2\ge0\forall y\)

Do đó: \(\left(x+2\right)^2+2\left(y-3\right)^2\ge0\forall x,y\)

\(\left(x+2\right)^2+2\left(y-3\right)^2< 4\)

và các số chính phương nhỏ hơn 4 là 0 và 1

nên \(\left(x+2\right)^2+2\left(y-3\right)^2\in\left\{0;1;2\right\}\)

*Trường hợp 1: (x+2)2=2(y-3)2=0

\(\Leftrightarrow\left(x+2\right)^2+2\left(y-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)

*Trường hợp 2: \(\left(x+2\right)^2=0\)\(\left(y-3\right)^2=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\\left[{}\begin{matrix}y-3=1\\y-3=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\\left[{}\begin{matrix}y=4\\y=2\end{matrix}\right.\end{matrix}\right.\)

*Trường hợp 3: \(\left(x+2\right)^2=1\)\(\left(y-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+2=1\\x+2=-1\end{matrix}\right.\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\\y=3\end{matrix}\right.\)

Vậy: (x,y)\(\in\){(-2;3);(-2;4);(-2;2);(-1;3);(-3;3)}

AH
Akai Haruma
Giáo viên
27 tháng 3 2020

Câu 1 bạn làm nhầm rồi.

$(x-1)^x(x-1)^2=(x-1)^x(x-1)^4$ không tương đương với $(x-1)^2=(x-1)^4$

Mà từ đây suy ra \(\left[\begin{matrix} (x-1)^x=0\\ (x-1)^2=(x-1)^4\end{matrix}\right.\)

Đối với TH $(x-1)^x=0$ thì có thể xảy ra 2TH: $x-1=0$ hoặc $x=0$

2 tháng 3 2018

1. 

\(A=\sqrt{1+2+...+\left(n-1\right)+n+\left(n-1\right)+...+2+1}\)

\(=\sqrt{\frac{\left(n-1\right).n}{2}\cdot2+n}=\sqrt{n^2-n+n}=\sqrt{n^2}=n\)

2.

\(A=\frac{x^2-3}{x+2}=\frac{x\left(x+2\right)-3}{x+2}=\frac{x^2+2x-2x-3}{x+2}=x+\frac{-2x-3}{x+2}\)

\(=x+\left(-1\right)+\frac{1}{x+2}\le\frac{1}{1}\)

Vậy GTLN của A = 1 tại x = -1

21 tháng 11 2018

bài này có lấn sang 7 hàng đẳng thức lớp 8 :))

\(m.n.\left(m^2-1-n^2+1\right)\)

\(=m.n.\left[\left(m-1\right).\left(m+1\right)-\left(n-1\right).\left(n+1\right)\right]\)

\(=m.n.\left(m-1\right).\left(m+1\right)-m.n.\left(n-1\right).\left(n+1\right)\)

vì m,m-1,m+1 và n,n-1,n+1 là tích của 3 số liên tiếp => \(m.n.\left(m-1\right).\left(m+1\right)⋮3,m.n.\left(n-1\right).\left(n+1\right)⋮3\)

=> \(m.n.\left(m-1\right).\left(m+1\right)-m.n.\left(n-1\right).\left(n+1\right)⋮3\)

hay \(m.n.\left(m^2-n^2\right)⋮3\left(đpcm\right)\)

21 tháng 11 2018

eei cho sửa cái đoạn dòng thứ 4 nha

vì m.(m+1).(m-1) và n.(n+1).(n-1)  là tích của 3 số liên tiếp 

=> m.(m+1).(m-1) chia hết cho 3

và n.(n+1).(n-1)  chia hết cho 3

=> ... như lúc này

21 tháng 11 2019

a

\(\left(x-1\right)^{2012}\ge0;\left(y-2\right)^{2010}\ge0;\left(x-z\right)^{2008}\ge0\)

\(\Rightarrow VT\ge0\)

Dấu "=" xảy ra tại \(x=z=1;y=2\)

b

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)

Ta có:

\(x^2+y^2+z^2=116\)

\(\Leftrightarrow4k^2+9k^2+16k^2=116\)

\(\Leftrightarrow k^2=4\Rightarrow k=2;k=-2\)

Thế ngược lên trên,àm nốt

c

\(\left||x-2|-3\right|=4\)

\(\Leftrightarrow\orbr{\begin{cases}\left|x-2\right|-3=4\\\left|x-2\right|-3=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left|x-2\right|=1\\\left|x-2\right|=-1\left(voli\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

d

\(xy+2x-y=5\)

\(\Leftrightarrow x\left(y+2\right)-\left(y+2\right)=3\)

\(\Leftrightarrow\left(y+2\right)\left(x-1\right)=3=1\cdot3=3\cdot1=\left(-1\right)\left(-3\right)=\left(-3\right)\left(-1\right)\)

Lập bảng làm nốt

đ

Lập bảng xét dâu ik ( trong NCPT toán 7 tập 2 có ) hoặc chia khoảng nếu ko bt bảng xét dấu như thế này,dù hơi dài:v

\(\left|x-2\right|=x-2\Leftrightarrow x-2\ge0\Leftrightarrow x\ge2\)

\(\left|x-2\right|=2-x\Leftrightarrow x-2< 0\Leftrightarrow x< 2\)

\(\left|3-2x\right|=3-2x\Leftrightarrow3-2x\ge0\Leftrightarrow2x\le3\Leftrightarrow x\le\frac{3}{2}\)

\(\left|3-2x\right|=2x-3\Leftrightarrow3-2x< 0\Leftrightarrow......\Leftrightarrow x>\frac{3}{2}\)

Chia khoảng đi nha !

P/S:Ê trả ơn bằng cách coi bài kiểm tra sử nha !