Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x+y}{\frac{1}{35}}=\frac{x-y}{\frac{1}{210}}=\frac{xy}{\frac{1}{12}}\left(1\right)\)
Theo t/c dãy tỉ số=nhau:
\(\frac{x+y}{\frac{1}{35}}=\frac{x-y}{\frac{1}{210}}=\frac{x+y+x-y}{\frac{1}{35}+\frac{1}{210}}=\frac{2x}{\frac{1}{30}}=2x.30=60x\left(2\right)\)
Từ (1) và (2) suy ra \(60x=\frac{xy}{\frac{1}{12}}=>\frac{60x}{xy}=\frac{1}{12}=< \frac{60}{y}=\frac{1}{12}=>y=720\)
Thay y=720 vào (1),ta có: \(\frac{x+720}{\frac{1}{35}}=\frac{x-720}{\frac{1}{210}}=>\left(x+720\right).35=\left(x-720\right).210=>35x+25200=210x-151200\)
\(=>x=1008\)
Vậy x=2008;y=720
Đăng từng bài thoy nha pn!!!
Bài 1:
Có : 2009 = 2008 + 1 = x + 1
Thay 2009 = x + 1 vào biểu thức trên,ta có :
x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010
= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)
= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1
= -2
Em tham khảo bài tại link dưới đây:
Câu hỏi của Hoàng Thị Minh Ngọc - Toán lớp 7 - Học toán với OnlineMath
+tổng của chúng là (x + y)
+hiệu của chúng là ( x-y )
+ tích của chúng là xy
Biết tổng,hiệu và tích của chúng tỉ lệ nghịch với 35, 210, và 12 ,
Tức là : 35(x + y) = 210(x - y) = 12xy
Hay:x+yx−y=21035⇒ 35(x + y) = 210(x - y) => (x - y) = x+y6 (1)
và (x - y) : xy = 12 : 210 => 12xy = 210(x - y) => (x - y) = 2xy35 (2)
Từ (1) ta có:x−y1=x+y6=[(x−y)+(x+y)]1+6=2x7 (3) (tc của dãy tỉ số bnhau)
Từ (1) ta lại có: x−y1=x+y6=[(x+y)−(x−y)]6−1=2b4 (4) (tc của dãy tỉ số bnhau)
Từ (2) & (3) suy ra:⇒2xy35=2x7⇒y=5
Từ (2) & (4) suy ra:2xy35=2y5⇒x=7
Vậy x = 7 và y = 5
1
\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{b+a+c}+\frac{c+b}{a+b+c}=2\)
=> M ko là số tự nhiên
2
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
Do \(a^2+b^2+c^2\ge0\Rightarrow ab+bc+ca\le0\)
3
\(\left(x+y\right)\cdot35=\left(x-y\right)\cdot2010=xy\cdot12\)
\(\Rightarrow35x+35y=2010x-2010y\)
\(\Rightarrow35-2010x=2010y-35y\)
\(\Rightarrow-175x=-245y\)
\(\Rightarrow\frac{x}{y}=\frac{245}{175}=\frac{7}{5}\)
\(\Rightarrow\frac{x}{7}=\frac{y}{5}\)
Đặt \(\frac{x}{7}=\frac{y}{5}=k\)
\(\Rightarrow x=7k;y=5k\)
\(\Rightarrow\left(5k+7k\right)\cdot35=35k^2\cdot12\)
\(\Rightarrow k=k^2\Rightarrow k=1\left(k\ne0\right)\)
Vậy \(x=7;y=5\)
bài 2 chưa thuyết phục lắm, nếu \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\) thì \(ab+bc+ca\ge0\) vẫn đúng, lẽ ra phải là \(ab+bc+ca=-\frac{\left(a^2+b^2+c^2\right)}{2}\le0\) *3*