Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(\frac{1}{3}.5+\frac{1}{5}.7+...+\frac{1}{97}.99\)
=>A=\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
=>2A=\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
=>2A=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
=>2A=\(\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)
=>A=\(\frac{32}{99}:2=\frac{32}{99}.\frac{1}{2}=\frac{32}{198}=\frac{16}{99}\)
I don't now
or no I don't
..................
sorry
Nên đợi ai đó giải hết 2 3 bài xong rồi mới đăng tiếp những bài còn lại, chứ dài vậy giải hơi nản =)))
Bài 1:
1, \(13\frac{2}{5}-\left(\frac{18}{32}-2\frac{6}{10}\right)\)
\(=\frac{67}{5}-\left(\frac{9}{16}-\frac{13}{5}\right)\)(Chuyển hỗn số thành p/số và rút gọn hai số trong ngoặc luôn)
\(=\frac{67}{5}-\left(\frac{-163}{80}\right)\)
\(=\frac{246}{16}\)
2, \(22.4\frac{5}{7}-\left(8.91+1,09\right)\)(Phần 2 viết vầy có đúng không vậy ? Nếu sai thì kêu chị sửa nhé)
\(=22.\frac{33}{7}-10\)
\(=\frac{726}{7}-10\)
\(=\frac{656}{7}\)
3, Chỗ ''3 phần 10 phần 2'' là sao :v ?
4, \(5\frac{2}{7}.\frac{8}{11}+5\frac{2}{7}.\frac{5}{11}-5\frac{2}{7}.\frac{2}{11}\)
\(=\frac{37}{7}.\frac{8}{11}+\frac{37}{7}.\frac{5}{11}-\frac{37}{7}.\frac{2}{11}\)(Chuyển hỗn số thành p/số)
\(=\frac{37}{7}.\left(\frac{8}{11}+\frac{5}{11}-\frac{2}{11}\right)\)(Dùng tính chất phân phối)
\(=\frac{37}{7}.\frac{11}{11}\)
\(=\frac{37}{7}.1=\frac{37}{7}\)
1)
A = \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{132}\)
= \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{11.12}\)
= \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{11}-\frac{1}{12}\)
= \(\frac{1}{5}-\frac{1}{12}\)
= \(\frac{7}{60}\)
B = \(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right).....\left(1+\frac{1}{99}\right)\)
= \(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
= \(\frac{3.4.5.....100}{2.3.4....99}\)
= \(\frac{100}{2}=50\)
C = \(\frac{1}{4^{2-1}}+\frac{1}{6^{2-1}}+\frac{1}{8^{2-1}}...+\frac{1}{30^{2-1}}\)
= \(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{30}\)
= \(\frac{1}{2.2}+\frac{1}{2.3}+\frac{1}{2.4}+...+\frac{1}{2.15}\)
= \(\frac{1}{2}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{2}.\frac{1}{4}+...+\frac{1}{2}.\frac{1}{15}\)
= \(\frac{1}{2}.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{15}\right)\)
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}+\left(\frac{1}{6}-\frac{1}{6}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)+\left(\frac{1}{10}-\frac{1}{10}\right)+\left(\frac{1}{11}-\frac{1}{11}\right)-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
~ Hok tốt ~
Bài 1:
Giờ đầu bán được số quả dưa là:
44.\(\frac{1}{3}\)+\(\frac{1}{3}\) = 15 (quả)
Giờ thứ hai bán được số quả dưa là:
(44-15).\(\frac{1}{3}\)+ \(\frac{1}{3}\)= 10 (quả)
Giờ thứ ba bán được số quả là:
44-15-10 = 19 (quả)
Đáp số: 19 quả
*Bài 2 mình hông có biết làm. Thứ lỗi nha