Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{a+b}{c}=2\)
\(\Rightarrow P=2+2+2=6\)
Xét a+b+c=0 thì A=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=-1\)
Xét a+b+c\(\ne0\).Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
\(\Rightarrow A=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a.2a.2a}{a.a.a}=8\)
Vậy.................................
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
cộng 1 vào mỗi tỉ số,ta được :
\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)
\(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)
xét a + b + c = 0 \(\Rightarrow\)a + b = -c ; b + c = -a ; a + c = -b
\(\Rightarrow P=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)
xét a + b + c khác 0 \(\Rightarrow\)b + c = a + c = a + b \(\Rightarrow\)a = b = c
\(\Rightarrow P=2+2+2=6\)
Có : a/b+c = b/a+c = c/a+b => b+c/a = a+c/b = a+b/c
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
b+c/a = a+c/b = a+b/c = b+c+a+c+a+b/a+b+c = 2
=> P = 2+ 2 + 2 =6
k mk nha