Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{12}{4}=3\)
Do đó: a=9; b=15; c=21
Gọi số học sinh của 3 lớp lần lượt là : a,b,c
Ta có: \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7};c-a=12\)
Áp dụng tcdtsbn , ta có:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{12}{4}=3\)
\(\Rightarrow\left\{{}\begin{matrix}a=9\\b=15\\c=21\end{matrix}\right.\)
Ta đặt : 7A = 7k ; 7B = 8k ; 7C = 9k
=> 7C - 7B = 9k - 8k = 2
=> k = 2
Ta có : 7A = 7.2 = 14 (hs)
7B = 8.2 = 16 (hs)
7C = 9.2 = 18 (hs)
Vậy ...
Gọi số h/s giỏi của 3 lớp 7A, 7B, 7C là a, b, c (học sinh; a, b, c \(\in\)N*)
Vì số h/s giỏi của 3 lớp 7A, 7B, 7C tỉ lệ với các số 7, 8, 9 nên \(\frac{a}{7}=\frac{b}{8}=\frac{c}{9}\)
Vì số h/s giỏi của lớp 7C ... 2 học sinh nên c - b = 2
Áp dụng tính chất DTSBN:
\(\frac{a}{7}=\frac{b}{8}=\frac{c}{9}=\frac{c-b}{9-8}=\frac{2}{1}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{7}=2\Rightarrow a=2.7=14\\\frac{b}{8}=2\Rightarrow b=2.8=16\\\frac{c}{9}=2\Rightarrow c=2.9=18\end{cases}}\)(Thỏa mãn điều kiện)
Vậy số h/s giỏi của 3 lớp 7A, 7B, 7C lần lượt là 14, 16, 18
Gọi số học sinh giỏi của 3 lớp 7A , 7B , 7C lần lượt là a , b , c
Theo đề bài ta có :
\(a:b:c=3:5:7\)
\(\Rightarrow\)\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)và \(c-a=12\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{c-a}{7-3}=\frac{12}{4}=3\)
\(\Rightarrow\)\(a=3.3=9\)
\(\Rightarrow\)\(b=3.5=15\)
\(\Rightarrow\)\(c=3.7=21\)
Vậy bạn tự kết luận
Gọi số học sinh giỏi của 3 lớp 7A , 7B , 7C lần lượt là a , b , c
Theo đề bài ta có :
a:b:c=3:5:7
⇒a3 =b5 =c7 và c−a=12
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
a3 =b5 =c7 =c−a7−3 =124 =3
⇒a=3.3=9
⇒b=3.5=15
⇒c=3.7=21
Vậy a=9 ; b=15 ; c=21