K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2021

định lý Ceva

22 tháng 2 2020

hình bạn tự vẽ nha

a) Xét tam giác ABB' và tg HBC' có

góc AB'B= HC'B

và góc ABB' chung

=> tg ABB' đồng dạng với tg HBC'(g-g)

=> BH/AB = BC'/BB'

=> BH.BB'=BC'.BA

Tương tự CB'.CA=CH.CC'

và BH.BB'=BA'.BC (1)

và CH.CC'=CA'.BC(2)

cộng 1 và 2 => BH.BB'+CH.CC'=BC2

nên BC'.BA+CB'.CA=BC2

Ba đường phân giác trong AM, BN, CP của tam giác ABC đồng qui tại I. a) Cm ( AP / BP ) * ( BI / NI) * ( NC / AC) = 1 b) Cm (BM / CM) * ( CI / PI) * ( PA / BA) = ( CN / AN) * ( AI / MI ) * ( MB / CB) c) Cho AB= 15, BC= 17, CA= 8. Tính IA , IB, IC. 2) Cho d' // d a) Cm ( A'B' / AB) = ( B'C' / BC) = ( C'D' // CD ) b) Đảo lại, Cm nếu m1, m2, m3, m4 cắt d, d' và ta có ( A'B' / AB) = ( B'C' / BC) = ( C'D' / CD) thì m1, m2, m3, m4, đồng qui. _ Hình vẽ như thế này...
Đọc tiếp

Ba đường phân giác trong AM, BN, CP của tam giác ABC đồng qui tại I. 
a) Cm ( AP / BP ) * ( BI / NI) * ( NC / AC) = 1 
b) Cm (BM / CM) * ( CI / PI) * ( PA / BA) = ( CN / AN) * ( AI / MI ) * ( MB / CB) 
c) Cho AB= 15, BC= 17, CA= 8. Tính IA , IB, IC. 

2) Cho d' // d 
a) Cm ( A'B' / AB) = ( B'C' / BC) = ( C'D' // CD ) 
b) Đảo lại, Cm nếu m1, m2, m3, m4 cắt d, d' và ta có ( A'B' / AB) = ( B'C' / BC) = ( C'D' / CD) thì m1, m2, m3, m4, đồng qui. 
_ Hình vẽ như thế này nha : Bốn đường thẳng m1, m2 , m3, m4 cùng giao nhau tại điểm O, hai đường // d và d' cắt 4 đường này theo thứ tự : d cắt m1 tại A' , cắt m2 tại B', cắt m3 tại C', cắt m4 tại D' ; d' cắt m1 tại A, cắt m2 tại B, cắt m3 tại C, cắt m4 tại D ( đoạn d vẽ trước đoạn d' nha!) 
* MẤY BÀI NÀY LÀ TOÁN HÌNH 8 . GIẢI THEO ĐỊNH LÍ THALES VÀ TÍNH CHẤT ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC

em xin cảm ơn

0