Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi x,y,z là số máy của mỗi đội
ta có số máy tỉ lệ ngịch với số ngày hoàn thành công việc nên ta có
\(\hept{\begin{cases}10x=6y=4z\\x+y+z=31\end{cases}\text{ hay }\hept{\begin{cases}\frac{x}{\frac{1}{10}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{4}}\\x+y+z=31\end{cases}}}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{10}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{4}}=\frac{x+y+z}{\frac{1}{10}+\frac{1}{6}+\frac{1}{4}}=\frac{31}{\frac{31}{60}}=60\)
thế nên \(\hept{\begin{cases}x=\frac{60}{10}=6\\y=\frac{60}{6}=10\\z=\frac{60}{4}=15\end{cases}}\)
Answer:
Gọi số máy của ba đội lần lượt là a, b, c (a, b, c > 0)
Đề ra, có: \(c-b=4\)
Do ba đội làm ba khối lượng công việc như nhau nên số máy và số ngày để hoàn thành công việc là hai đại lượng tỉ lệ nghịch
\(\Rightarrow5a=10b=6c\)
\(\Rightarrow\frac{5a}{30}=\frac{10b}{30}=\frac{6c}{30}\Rightarrow\frac{a}{6}=\frac{b}{3}=\frac{c}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{a}{6}=\frac{b}{3}=\frac{c}{5}=\frac{c-b}{5-3}=\frac{4}{2}=2\)
\(\Rightarrow\hept{\begin{cases}a=12\\b=6\\c=10\end{cases}}\)
Gọi số máy của 3 đội lần lượt là \(x,y,z\left(x;y;z\inℕ^∗\right)\)
Mà tổng số máy của đội hai và ba là \(14\)
\(\Rightarrow\) \(y+z=14\)
Vì số máy và số ngày là hai đại lượng tỉ lệ nghịch nên ta có:
\(2x=3y=4z\)
\(\Rightarrow\)\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\frac{y+z}{\frac{1}{3}+\frac{1}{4}}=\frac{14}{\frac{7}{12}}=24\)
Do đó:
\(\frac{x}{\frac{1}{2}}=24\Rightarrow x=24.\frac{1}{2}=12\)
\(\frac{y}{\frac{1}{3}}=24\Rightarrow y=24.\frac{1}{3}=8\)
\(\frac{z}{\frac{1}{4}}=24\Rightarrow z=24.\frac{1}{4}=6\)
Vậy số máy của đội thứ nhất, đội thứ 2 và đội thứ 3 lần lượt là \(12;8;6\)