Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức: \(A^2 = x^2 +\frac{v^2}{\omega^2} \) \(\Rightarrow A^2 = 3^2 +\frac{(60\sqrt3)^2}{\omega^2} = (3\sqrt2)^2 +\frac{(60\sqrt2)^2}{\omega^2} \)
Giải hệ trên ta được \(\omega = 20rad/s; \ A =6cm\)
Đáp án B
+ Từ phương trình
+ Biểu diễn tương ứng hai dao động vuông pha trên đường tròn.
=> Từ hình vẽ, ta có
+ Dao động thứ hai chậm pha hơn dao động thứ nhất một góc 90 o
=>từ hình vẽ, ta có
Chọn A
Thay cặp (x1, v1) và (x2, v2) vào hệ thức liên hệ giữa v và x:
A
2
-
v
2
w
2
=
x
2
ta được hệ phương trình hai ẩn
A
2
và
1
w
2
. Giải hệ phương trình ta được:
+ A 2 = 36 ⇒ A = 6 c m .
+ 1 w 2 = 1 400 ⇒ w = 20 r a d / s .
Khi qua VTCB, vận tốc của vật đạt cực đại \(\Rightarrow v_{max} = \omega A = \frac{2\pi}{T} A = 2 (cm/s)\)
+ Khi \(W_đ=3W_t\Rightarrow W=4W_t\Rightarrow x=\pm\frac{A}{2}\)
+ Khi \(W_đ=\frac{1}{3}W_t\Rightarrow W=\frac{4}{3}W_t\Rightarrow x=\pm\frac{\sqrt{3}}{2}A\)
Ta có véc tơ quay như sau:
Thời gian nhỏ nhất ứng với véc tơ quay từ M đến N.
\(t=\frac{30}{360}T=\frac{1}{12}.2=\frac{1}{6}s\)
\(S=\left(\frac{\sqrt{3}}{2}-\frac{1}{2}\right).10=\left(\sqrt{3}-1\right).5\)
Tốc độ trung bình: \(v=\frac{S}{t}=\left(\sqrt{3}-1\right).30=21,96\)(cm/s)
Chọn B