Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.1 Hình vuông có tối đa 4 góc vậy 4 hình vuông có tối đa 20 góc. S
2.1 hình vuông có tối đa 4 góc vậy 4 hình vuông có tối đa 16 góc. Đ
3. 1 hình vuông có tối thiểu 4 góc vậy 4 hình vuông có tối thiểu 16 góc. Đ
4.1 hình vuông có tối thiểu 1 góc vậy 4 hình vuông có tối thiểu 16 góc. S
Nhiêu đó hết tài năng rồi, mình mới lớp 3 thôi.
a: \(\dfrac{x-1}{x^2-x+1}-\dfrac{x+1}{x^2+x+1}=\dfrac{10}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)-x\left(x+1\right)\left(x^2-x+1\right)=10\)
\(\Leftrightarrow x\left(x^3-1\right)-x\left(x^3+1\right)=10\)
=>-2x=10
hay x=-5
d: \(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{1}{\left(x+7\right)\left(x+8\right)}=\dfrac{1}{14}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+8}=\dfrac{1}{14}\)
\(\Leftrightarrow\left(x+1\right)\left(x+8\right)=14\left(x+8\right)-14\left(x+1\right)\)
\(\Leftrightarrow x^2+9x+8=14x+112-14x-14=98\)
\(\Leftrightarrow x^2+9x-90=0\)
\(\Leftrightarrow x\in\left\{6;-15\right\}\)
a) Ta có: \(B=\left(\dfrac{x}{3x-9}+\dfrac{2x-3}{3x-x^2}\right)\cdot\dfrac{3x^2-9x}{x^2+6x+9}\)
\(=\left(\dfrac{x}{3\left(x-3\right)}-\dfrac{2x-3}{x\left(x-3\right)}\right)\cdot\dfrac{3x\left(x-3\right)}{\left(x+3\right)^2}\)
\(=\left(\dfrac{x^2}{3x\left(x-3\right)}-\dfrac{3\left(2x-3\right)}{3x\left(x-3\right)}\right)\cdot\dfrac{3x\left(x-3\right)}{\left(x+3\right)^2}\)
\(=\dfrac{x^2-6x+9}{3x\left(x-3\right)}\cdot\dfrac{3x\left(x-3\right)}{\left(x+3\right)^2}\)
\(=\dfrac{x^2-6x+9}{x^2+6x+9}\)
b) Ta có: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\dfrac{1}{x+2}\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\dfrac{1}{x+2}\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{1}{x+2}\)
\(=\left(\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\right):\dfrac{1}{x+2}\)
\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{1}\)
\(=\dfrac{-6}{x-2}\)