K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

a)

Ta có

\(351^{37}\) chia hết cho 9 vì 351 chia hết cho 9

\(942^{60}=\left(942^2\right)^{60}\)

Ta có

942 chia hết cho 3

Mà 3 là số nguyên tố

=> 9422 chia hết cho 32

=>  9422  chia hết cho 9

\(\Rightarrow\left(942^2\right)^{30}\) chia hết cho 9

=> đpcm

Cm chia hết cho 2

Vì \(351^{37}\) không chia hết cho 2 mà \(942^{60}\) chia hết cho 2

=> Sai đề

3 tháng 8 2016

a) Các số có c/số tận cung là 2 có lũy thừa được kết quả có c/số tân cung lặp lại theo quy luật 1 nhóm 4 c/số sau (2;4;8;6) 

ta có 60: 4=15(nhóm) => 942^60 có c/số tận cùng là c/số tận cùng của nhóm thứ 15 và là c/số 6 

mặt khác 351^37 có kết quả có c/số tận cùng là 1 (vì 351 có c/số tận cung =1) 

=>kết quả phép trừ 942^60 - 351^37 có c/số tận cùng là: 6-1=5 

=>942^60 - 351^37 chia hết cho 5 

b/ giải thích tương tự câu a ta có 

99^5 có c/số tận cùng là: 9 

98^4 có c/số tận cung là: 6 

97^3 có c/số tận cùng là: 3 

96^2 có c/số tận cùng là: 6 

=> 99^5 - 98^4 + 97^3 - 96^2 có c/số tận cùng là: 9-6+3-6=0 

vậy 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5 vì có c/số tận cung là 0 (dâu hiệu chia hết cho 2 và 5)

Bài 2: Nếu n = 0 => 5n - 1= 1 - 1 = 0 chia hết cho 4

Nếu n = 1 => 5n - 1 = 5 - 1 = 4 chia hết cho 3

Nếu n > 2 => 5n - 1 = (.....25) - 1 = (....24) có hai cs tận cùng là số chia hết cho 4 thì số đó chia hết cho 4

 

26 tháng 7 2020

Câu b) 7700 cũng gần như thế thôi ông Giáo ạ

Bg

Ta có: 2427700 - 761025 = 2424.1925 - (...6)

= (2424)1925 - (...6)

= (...6)1925 - (...6

= (...6) - (...6

= (...0\(⋮\)10

=> 2427700 - 761025 \(⋮\)10

=> ĐPCM

26 tháng 7 2020

a) Ta có: \(942^{60}=\left(942^4\right)^{15}=\left(\overline{...6}\right)^{15}=\overline{...6}\)

               \(351^{37}=\overline{...1}\)

Vì \(\left(\overline{...6}\right)-\left(\overline{...1}\right)=\overline{...5}⋮5\) nên \(942^{60}-351^{37}⋮5\)  (đpcm)

b) Ta có: \(242^{2700}=\left(2400^4\right)^{675}=\left(\overline{...6}\right)^{675}=\overline{...6}\)

              \(76^{1025}=\overline{...6}\)

Vì \(\left(\overline{...6}\right)-\left(\overline{...6}\right)=\overline{...0}⋮10\) nên \(242^{2700}-76^{1025}⋮10\)  (đpcm)

c) Để 995 - 984 + 973 - 962 chia hết cho cả 2 và 5 thì 995 - 984 + 973 - 962 phải chia hết cho 10

Có: \(99^5=99^2.99=\overline{...1}.99=\overline{...9}\)

      \(98^4=\left(98^2\right)^2=\overline{...6}\)

      \(97^3=\overline{...3}\)

       \(96^2=\overline{...6}\)

\(\left(\overline{...9}\right)-\left(\overline{...6}\right)+\left(\overline{...3}\right)-\left(\overline{...6}\right)=\overline{...0}⋮10\)

\(\Rightarrow99^5-98^4+97^3-96^2⋮10\)  (đpcm)

26 tháng 7 2020

à mình nhầm câu b sửa số 242^2700 thành 242^7700 nhé

9 tháng 10 2018

a = 2 + 2 mũ 2 + chấm chấm chấm + 2 mũ 39 chia hết cho 35

14 tháng 10 2015

a, 942^60-351^37

​=(942^4)^15-351^37

​=(....6)^15 -351^37

suy ra( 942^4)^15 có tận cùng là 6

​357^37 có tận cùng là 1

​hiệu của 942^60-351^37 có tận cùng là 5

​suy ra 942^60-351^37 chia hết cho 5

28 tháng 10 2015

a) Ta có: 942^60=(942^4)^15=...6^15=...6

351^37=...1

Suy ra: 942^60-351^37=...5 chia hết cho 5. Vậy 942^60-351^37 chia hết cho 5

b) Làm tương tự câu trên

 

 

5 tháng 1 2017

bài 1

Áp dụng a^ n -b^ n chia hết cho a-b với mọi n thuộc N : a ^n -1+ b ^n+1 chia hết cho a+b với mọi n thuộc N

=> 9^ 2n-1

= máy tính bỏ túi là xong 

bài 2

a) Ta có : 942 60 -351 37=(942 4 )15 -351 37=(...6)15 -351 37=(...6)-(...1)=(...5)

vì (...5) có tận cùng là 5

=> (...5) chia hết cho 5

b) Ta có : 99^ 5=(99^ 4 )(99 ^1 )=(...1).(...9)=(....9)

98^ 4=(...6)

97^ 3=97^ 2 .97=(...9)(..7)=(..3)

96 ^2=(....6)

=> (...9)-(...6)+(...3)-(...6)=(...0)

Vây (....0) chia hết cho cả 2 và 5 

bài 3

A = 405 n + 2^405 + m2

405^ n tận cùng là 5 2 ^405 = (2^ 4 )101 . 2

= (...6)101 . 2 = (..6).2 = (..2)

m2 tận cùng là 0;1;4;5;6;9

Vậy chữ số tận cùng của A có thể là 7 ; 8 ; 3 ; 2 ; 6

n không có tận cùng là 0

Vậy A không chia hết cho 10 

5 tháng 1 2017

bài 4

a) Chữ số tận cùng của số đuôi 1 lũy thừa luôn là 1
b) Số đuôi 8 thì: ^(2n+1) thì đuôi là 8
^(2n+2) thì đuôi là 4
^(2n+3) thì đuôi là 2
^(2n+4) thì đuôi là 6
218=108.2+2=> Có đuôi là 4

15 tháng 9 2015

a) 942^60 - 351^37 chia hết cho 5 
2^1 có c/số tận củng là 2 
2^2 có c/số tận củng là 4 
2^3 có c/số tận củng là 8 
2^4 có c/số tận củng là 6 
2^5 có c/số tận củng là 2 
................................ 
=>Các số có c/số tận cung là 2 có lũy thừa được kết quả có c/số tân cung lặp lại theo quy luật 1 nhóm 4 c/số sau (2;4;8;6) 
ta có 60: 4=15(nhóm) => 942^60 có c/số tận cùng là c/số tận cùng của nhóm thứ 15 và là c/số 6 
mặt khác 351^37 có kết quả có c/số tận cùng là 1 (vì 351 có c/số tận cung =1) 
=>kết quả phép trừ 942^60 - 351^37 có c/số tận cùng là: 6-1=5 
=>942^60 - 351^37 chia hết cho 5 
b/ giải thích tương tự câu a ta có 
99^5 có c/số tận cùng là: 9 
98^4 có c/số tận cung là: 6 
97^3 có c/số tận cùng là: 3 
96^2 có c/số tận cùng là: 6 
=> 99^5 - 98^4 + 97^3 - 96^2 có c/số tận cùng là: 9-6+3-6=0 
vậy 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5 vì có c/số tận cung là 0 (dâu hiệu chia hết cho 2 và 5)