Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.4+2.5+3.6+...+99.102
=1(2+2)+2(3+2)+3(4+2)+...99(100+2)
=1.2+1.2+2.3+2.2+...+99.100+99.2
=(1.2+2.3+...+99.100)+2(1+2+...+99)
A=1.2+2.3+3.4+...+99.100(cho A la ten bieu thuc nay)
3A=1.2(3-0)+2.3(4-1)+...+99.100(101-98)
=(1.2.3+2.3.4+...+99.100.101)-(1.2.3+2.3.4+3.4.5+...+98.99.100
=99.100.101=>A=99.100.101399.100.1013=33330
2.(1+2+...99)
=2(100.99:2)=2.4950=9900
33330+9900=343200
Vậy B = 343200
1.4+2.5+3.6+...+99.102=1(2+2)+2(3+2)+3(4+2)+...99(100+2)
=1.2+1.2+2.3+2.2+...+99.100+99.2
=(1.2+2.3+...+99.100)+2(1+2+...+99)
A=1.2+2.3+3.4+...+99.100(cho A la ten bieu thuc nay)
3A=1.2(3-0)+2.3(4-1)+...+99.100(101-98)
=(1.2.3+2.3.4+...+99.100.101)-(1.2.3+2.3.4+3.4.5+...+98.99.100
=99.100.101=>A=\(\frac{99.100.101}{3}\)=33330
2.(1+2+...99)
=2(100.99:2)=2.4950=9900
33330+9900=343200
vay...
Đặt \(A=1.4+2.5+3.6+...+100.103\)
\(=1\left(2.2\right)+2\left(3+2\right)+3\left(4+2\right)+...+100\left(101+2\right)\)
\(=1.2+2.3+3.4+...+100.101+\left(1.2+2.2+3.2+...+100.2\right)\)
\(=1.2+2.3+3.4+...+100.101+2\left(1+2+3+...+100\right)\)
\(=1.2+2.3+3.4+...+100.101+2.100\left(100+1\right):2\)
\(=1.2+2.3+3.4+...+100.101+10100\)
Đặt \(B=1.2+2.3+3.4+...+100.101\)
\(\Rightarrow3B=1.2.3+2.3.3+3.4.3+100.101.3\)
\(\Rightarrow3B=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+100.101\left(102-99\right)\)
\(\Rightarrow3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+100.101.102-99.100.101\)
\(\Rightarrow3B=100.101.102\)
\(\Rightarrow B=343400\)
Khi đó \(A=343400=10100=333300\)
Đặt A = 1.4 + 2.5 + 3.6 + 4.7 + ... + 100.103
3A = 3.(1.2 + 2.3 + 3.4 + ... + 100.101] + 3.(2 + 4 + 6 + ... + 200)
= 1.2.3 + 2.3.3 + 3.4.3 + ... + 100.101.3 + 3.(2 + 4 + 6 + ... + 200)
\(\Rightarrow\) A = 100.101.105:3 = 353500
Biet lam ti tick tui 1 cai nha Trần Hải An
\(B=1.4+2.5+3.6+...+99.102=1\left(2+2\right)+2\left(3+2\right)+3\left(4+2\right)+...+99\left(100+2\right)\)
\(=1.2+1.2+2.3+2.2+3.4+3.2+...+99.100+99.2\)
\(=\left(1.2+2.3+3.4+...+99.100\right)+2.\left(1+2+3+...+99\right)\)
Tính \(E=1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3E=1.2.\left(3-0\right)+2.3\left(4-1\right)+3.4\left(5-2\right)+...+99.100\left(101-98\right)\)\(=\left(1.2.3+2.3.4+3.4.5+...+99.100.101\right)-\left(1.2.3+2.3.4+3.4.5+...+98.99.100\right)\)
\(=99.100.101\Rightarrow E=\frac{99.100.101}{3}=333300\)
Tính \(F=2.\left(1+2+3+...+99\right)\)
\(=2.\left(\frac{\left(99+1\right)99}{2}\right)=100.99=9900\)
Vậy, \(B=E+F=333300+9900=343200\)