Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{500}+\frac{3}{500}+\frac{5}{500}+...+\frac{95}{500}+\frac{97}{500}+\frac{99}{500}\)
\(A=\frac{1+3+5+...+95+97+99}{500}\)
\(A=\frac{\left(1+99\right)x50:2}{500}=\frac{100x50:2}{500}=\frac{100x5x10x\frac{1}{2}}{100x5}=10x\frac{1}{2}=5\)
Bài tìm a sai đề bài, nên sửa lại, mình giải cho.
Tính giá trị của biểu thức:
A = \(\frac{1}{500}\)+ \(\frac{3}{500}\)+ \(\frac{5}{500}\)+ ... + \(\frac{97}{500}\)+ \(\frac{99}{500}\)
Ta chỉ cộng tử số, vì đây là dãy phân số cùng mẫu số.
Khoảnh cách giữa các tử số là 2 đơn vị.
Có các tử số trong dãy phân số này là:
(99 - 1) : 2 + 1 = 50(tử số)
Tổng của các tử số trong dãy phân số là:
(99 + 1) x 50 : 2 = 2500
\(\frac{2500}{500}\)= 5
Vậy: A = 5
Giải: Ta có:
\(20\%a+0,4a=12\)
\(\frac{1}{5}a+\frac{2}{5}a=12\)
\(\left(\frac{1}{5}+\frac{2}{5}\right)a=12\)
\(\frac{3}{5}a=12\)
\(a=12\div\frac{3}{5}=20\)
Vậy \(a=2\)
Bài 2: Giải: Ta có:
\(A=\frac{1}{500}+\frac{3}{500}+\frac{5}{500}+...+\frac{97}{500}+\frac{99}{500}\)
\(=\frac{1+3+5+...+97+99}{500}\)
Bây giờ ta xét tử số: \(1+3+5+...+97+99\)
\(=\frac{\left(1+99\right).50}{2}=2500\)
\(\Rightarrow A=\frac{2500}{500}=5\)
Vậy \(A=5\)
Xét tổng của các số trong ngoặc vuông
Ta thấy:tổng của các số trong ngoặc vuông là tổng của các số lẻ liên tiếp từ 1-99
=>QLC của các số này là 2.
=>SSH là:(99-1):2+1=50(số hạng)
=>Tổng là(1+99).50:2=2500.
Ta có:[1+3+5+...+99]-2.x=500
2500-2.x=500
2.x=2500-500
2.x=2000
=>x=1000
\(\frac{1}{1\times10}+\frac{1}{2\times15}+\frac{1}{3\times20}+...+\frac{1}{98\times495}+\frac{1}{99\times500}\)
\(=\frac{1}{1\times2\times5}+\frac{1}{2\times3\times5}+\frac{1}{3\times4\times5}+...+\frac{1}{98\times99\times5}+\frac{1}{99\times100\times5}\)
\(=\frac{1}{5}\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{100}\right)=\frac{1}{5}\times\frac{99}{100}=\frac{99}{500}\)
\(\frac{1}{1\times10}+\frac{1}{2\times15}+\frac{1}{3\times20}+...+\frac{1}{98\times495}+\frac{1}{99\times500}\)
\(=\frac{1}{1\times2\times5}+\frac{1}{2\times3\times5}+\frac{1}{3\times4\times5}+...+\frac{1}{98\times90\times5}+\frac{1}{90\times100\times5}\)
\(=\frac{1}{5}\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+...+\frac{99-98}{98\times99}+\frac{100-99}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{100}\right)=\frac{99}{500}\)
S = 1-1/2 + 1/3-1/4 + 1/5-1/6 + ..... 1/499-1/500 = (1 + 1/3 + 1/5 + ..+ 1/499) - (1/2 + 1/4 + 1/6 + ...+ 1/500) - (1/2 + 1/4 + 1/6 + ...+ 1/500) + (1/2 + 1/4 + 1/6 + ...+ 1/500) S = (1 + 1/2 + 1/3 + 1/4 + ....+ 1/500) - 2.(1/2 + 1/4 + 1/6 + ...+ 1/500) = (1 + 1/2 + 1/3 + 1/4 + ....+ 1/500)- (1 + 1/2 + 1/3 + ...+1/250) = 1/251 + 1/252 + ...+ 1/500.
Vậy S = 1/251 + 1/252 + ...+ 1/500
S = 1-1/2 + 1/3-1/4 + 1/5-1/6 + ..... 1/499-1/500
= (1 + 1/3 + 1/5 + ..+ 1/499) - (1/2 + 1/4 + 1/6 + ...+ 1/500) - (1/2 + 1/4 + 1/6 + ...+ 1/500) + (1/2 + 1/4 + 1/6 + ...+ 1/500)
S = (1 + 1/2 + 1/3 + 1/4 + ....+ 1/500) - 2.(1/2 + 1/4 + 1/6 + ...+ 1/500)
= (1 + 1/2 + 1/3 + 1/4 + ....+ 1/500)- (1 + 1/2 + 1/3 + ...+1/250)
= 1/251 + 1/252 + ...+ 1/500.
Vậy S = 1/251 + 1/252 + ...+ 1/500
A = 5 nhé
A=1/500+3/500+5/500+....+99/500
A=(1+3+5+....+99)/500
A=2500/500
A=5