K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

@@ gửi ít thôi bạn

23 tháng 7 2017

bạn lm từng bài cg đc mà

Ta có: \(\dfrac{B}{A}=\dfrac{\dfrac{1}{2016}+\dfrac{2}{2015}+\dfrac{3}{2014}+...+\dfrac{2015}{2}+\dfrac{2016}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{2}{2015}\right)+\left(1+\dfrac{1}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=2017\)

12 tháng 5 2019

Đặt \(S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}{\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}}\)

 Biến đổi mẫu 

\(\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}\)

\(=\left(2017+1\right)+\left(\frac{2016}{2}+1\right)+...+\left(\frac{1}{2017}+1\right)-2017\)

\(=2018+\frac{2018}{2}+...+\frac{2018}{2017}+\frac{2018}{2018}-2018\)

\(=2018.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)\)

\(\Rightarrow S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}{2018.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}=\frac{1}{2018}\)

Ta có: \(\dfrac{B}{A}=\dfrac{\dfrac{1}{2016}+\dfrac{2}{2015}+\dfrac{3}{2014}+...+\dfrac{2015}{2}+\dfrac{2016}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{2}{2015}\right)+\left(1+\dfrac{1}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=2017\)

17 tháng 6 2016

=\(-\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2015}+\frac{1}{2014}-...-\frac{1}{2}+1\)

=\(-\frac{1}{2016}+1=\frac{2015}{2016}\)

17 tháng 6 2016

Ta có :\(\frac{-1}{2016.2015}-\frac{1}{2015.2014}-\frac{1}{2014.2013}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

       = \(-\left(\frac{1}{2016.2015}+\frac{1}{2015.2014}+\frac{1}{2014.2013}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

       = \(-\left(\frac{1}{2016}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2014}+\frac{1}{2014}-\frac{1}{2013}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-\frac{1}{1}\right)\)

       = \(-\left(\frac{1}{2016}-1\right)\)

       = \(-\left(-\frac{2015}{2016}\right)\)

      =  \(-\frac{2015}{2016}\)

Mk làm kĩ lắm rồi. ko tích nữa mk cũng chịu bạn luôn @@