Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(A=a^2+b^2+c^2+2ab-2ac-2bc+a^2+b^2+c^2-2ab-2bc+2ac\)
\(=2a^2+2b^2+2c^2-4bc\)
\(=2+2\cdot9+2\cdot1-4\cdot3\cdot\left(-1\right)=22+12=34\)
b: \(B=\left(a+b-a+b\right)\left(a+b+a-b\right)=4ab=4\cdot2\cdot5=40\)
\(a,\Leftrightarrow\left(x+3\right)\left(x+3-2x-1\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ b,\Leftrightarrow x\left(x^2-12x+36\right)=0\\ \Leftrightarrow x\left(x-6\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
a, (x+3)2 - ( 2x + 1 ).( x+3)=0 b, x3-12x2+36x =0
=> (x+3).(x+3-2x-1) => x(x2-12x+36) = 0
=>(x+3).(-x+2) => x(x-6)2 = 0
=> x+3=0 <=> x=-3 => x=0 <=> x=0
-x+2=0 <=> x=-2 x-6= 0 <=> x=6
Bài 2:
a: \(A=\left[a+\left(b-c\right)\right]^2+\left[a-\left(b-c\right)\right]^2\)
\(=a^2+2a\left(b-c\right)+\left(b-c\right)^2+a^2-2a\left(b-c\right)+\left(b-c\right)^2\)
\(=2a^2+2\left(b-c\right)^2\)
\(=2\cdot1^2+2\left(3+1\right)^2=2+32=34\)
b: \(B=a^2+2ab+b^2-a^2+2ab-b^2=4ab=4\cdot2\cdot5=40\)