K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2020

A = x2 - 10x + 12

= ( x2 - 10x + 25 ) - 13

= ( x - 5 )2 - 13

( x - 5 )2 ≥ 0 ∀ x => ( x - 5 )2 - 13 ≥ -13

Đẳng thức xảy ra <=> x - 5 = 0 => x = 5

=> MinA = -13 <=> x = 5

B = 6y2 + 4y - 1

= 6( y2 + 2/3y + 1/9 ) - 5/3

= 6( y + 1/3 )2 - 5/3

6( y + 1/3 )2 ≥ 0 ∀ x => 6( y + 1/3 )2 - 5/3 ≥ -5/3

Đẳng thức xảy ra <=> y + 1/3 = 0 => y = -1/3

=> MinB = -5/3 <=> y = -1/3

C = x2 + y2 - 2x - 6y - 1

= ( x2 - 2x + 1 ) + ( y2 - 6y + 9 ) - 11

= ( x - 1 )2 + ( y - 3 )2 - 11

\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x-1\right)^2+\left(y-3\right)^2-11\ge-11\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

=> MinC = -11 <=> x = 1 ; y = 3

D = 2x2 + 3y2 - x - 3y + 5

= 2( x2 - 1/2x + 1/16 ) + 3( y2 - y + 1/4 ) + 33/8

= 2( x - 1/4 )2 + 3( y - 1/2 )2 + 33/8

\(\hept{\begin{cases}2\left(x-\frac{1}{4}\right)^2\ge0\forall x\\3\left(y-\frac{1}{2}\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x-\frac{1}{4}\right)^2+3\left(y-\frac{1}{2}\right)^2+\frac{33}{8}\ge\frac{33}{8}\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{4}=0\\y-\frac{1}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=\frac{1}{2}\end{cases}}\)

=> MinD = 33/8 <=> x = 1/4 ; y = 1/2

4 tháng 9 2021

\(A=x^2+4x+5=\left(x+2\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow x=-2\)

\(B=x^2+10x-1=\left(x+5\right)^2-26\ge-26\)

Dấu \("="\Leftrightarrow x=-5\)

\(C=5-4x+4x^2=\left(2x-1\right)^2+4\ge4\)

Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)

\(D=x^2+y^2-2x+6y-3=\left(x-1\right)^2+\left(y+3\right)^2-13\ge-13\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

\(E=2x^2+y^2+2xy+2x+3=\left(x+y\right)^2+\left(x+1\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow x=-y=-1\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

\(A=x^2+4x+5\)

\(=x^2+4x+4+1\)

\(=\left(x+2\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi x=-2

\(C=4x^2-4x+5\)

\(=4x^2-4x+1+4\)

\(=\left(2x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

15 tháng 8 2021

Giúp mình với ạ,cảm ơn mọi người

b: Ta có: \(B=x^2+4x+9y^2-6y-1\)

\(=x^2+4x+4+9y^2-6y+1-6\)

\(=\left(x+2\right)^2+\left(3y-1\right)^2-6\ge-6\forall x,y\)

Dấu '=' xảy ra khi x=-2 và \(y=\dfrac{1}{3}\)

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

 nếu ta dùng cách rút gọn biểu thức thì ta có kết quả 

A=(8a-8)x2+(2a-2)x-15a+15

còn nếu sử dụng cách Phân tích thành nhân tử  thì ta  sẽ  có kết quả là 

A=(a-1)(2x+3)(4x-5)

(tự xét )

B  = (7x - 6y)×(4x + 3y) - 2×(14x + y)×(x - 9y) - 19×(13xy - 1)

= 28x^2 - 24xy + 21xy - 18y^2 - 2.(14x^2 + xy - 126xy - 9y^2) - 247xy + 19
= 28x^2 - 24xy + 21xy - 18y^2 - 28x^2 - 2xy + 252xy + 18y^2 - 247xy + 19
= 19
vậy biểu thức A ko phụ thuộc vào x, y

hc tốt

tớ chỉ biết làm phần B thôi 

 B= (7x - 6y)×(4x + 3y) - 2×(14x + y)×(x - 9y) - 19×(13xy - 1)
= 28x^2 - 24xy + 21xy - 18y^2 - 2.(14x^2 + xy - 126xy - 9y^2) - 247xy + 19
= 28x^2 - 24xy + 21xy - 18y^2 - 28x^2 - 2xy + 252xy + 18y^2 - 247xy + 19
= 19
vậy biểu thức A ko phụ thuộc vào x, y

phần A tương tự 

5 tháng 2 2020

\(D=x^2+4y^2-2xy-6y-10x+10y+32\)

\(=x^2-2.x\left(y+5\right)+\left(y+5\right)^2-\left(y+5\right)^2+4y^2+4y+32\)

\(=\left(x-y-5\right)^2-y^2-10y-25+4y^2+4y+32\)

\(=\left(x-y-5\right)^2+3y^2-6y+7\)

\(=\left(x-y-5\right)^2+3\left(y^2-2y+1\right)+4\)

\(=\left(x-y-5\right)^2+3\left(y-1\right)^2+4\)

Ta thấy : \(\left(x-y-5\right)^2+3\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow D\ge4\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-5=0\\y-1=0\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x=6\\y=1\end{cases}}\)

Vậy : min \(D=4\) tại \(x=6,y=1\)

11 tháng 10 2020

1/

( a + b )3 + ( a - b )3 - 6ab2 < đã sửa >

= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3 - 6ab2

= 2a3 

2/

A = x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y

Dấu "=" xảy ra khi x = 1 ; y = 2

=> MinA = 1 <=> x = 1 ; y = 2

B = 2x2 + 8x + 10 = 2( x2 + 4x + 4 ) + 2 = 2( x + 2 )2 + 2 ≥ 2 ∀ x

Dấu "=" xảy ra khi x = -2

=> MinB = 2 <=> x = -2

C = 25x2 + 3y2 - 10x + 11 = ( 25x2 - 10x + 1 ) + 3y2 + 10 = ( 5x - 1 )2 + 3y2 + 10 ≥ 10 ∀ x, y

Dấu "=" xảy ra khi x = 1/5 ; y = 0

=> MinC = 10 <=> x = 1/5 ; y = 0

D = ( x - 3 )2 + ( x - 11 )2

Đặt t = x - 7

D = ( t + 4 )2 + ( t - 4 )2

    = t2 + 8t + 16 + t2 - 8t + 16

    = t2 + 32 ≥ 32 ∀ t

Dấu "=" xảy ra khi t = 0

=> x - 7 = 0 => x = 7

=> MinD = 32 <=> x = 7

11 tháng 10 2020

Cảm ơn bn nhiều nhé!

12 tháng 7 2018

\(A=x^2+3x+7\)

\(A=x^2+2x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+7\)

\(A=\left(x+\frac{3}{2}\right)^2-\frac{9}{4}+7\)

\(A=\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\)

Nhận xét: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=0\Rightarrow x=\frac{-3}{2}\)

Vậy \(minA=\frac{19}{4}\Leftrightarrow x=\frac{-3}{2}\)

Các câu khác lm tương tự nhé, lần sau đừng đưa nhiều câu cùng một lúc lên thế này, đưa từng câu một thôi thì bn sẽ có câu tl nhanh hơn đấy

12 tháng 7 2018

Uk.Mk nhớ rồi!