Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{\sqrt{108x^3}}{\sqrt{12x}}=\frac{\sqrt{36.3.x^3}}{\sqrt{3.4.x}}=\frac{6\sqrt{3}.\sqrt{x}^3}{2\sqrt{3}.\sqrt{x}}=3\sqrt{x}^2=3x\)
\(b,\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}=\frac{\sqrt{13}.\sqrt{x^4}.\sqrt{y^6}}{\sqrt{16.13}.\sqrt{x^6}.\sqrt{y^6}}=\frac{\sqrt{13}.x^2y^3}{4\sqrt{13}x^3y^3}=\frac{1}{4x}\)
\(c,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(=\frac{\sqrt{x}^3+\sqrt{y}^3}{\sqrt{x}+\sqrt{y}}-\left(x+2\sqrt{xy}+y\right)\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x-2\sqrt{xy}-y\)
\(=x-\sqrt{xy}+y-x-2\sqrt{xy}-y=-3\sqrt{xy}\)
\(d,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
Đk chỗ này là \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge\sqrt{1}\Rightarrow x\ge1\)nhé
\(e,\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}.\frac{y-2\sqrt{y}+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)
\(B=\frac{2}{x^2-y^2}\cdot\sqrt{\frac{9\left(x^2+2xy+y^2\right)}{4}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\sqrt{\frac{9\left(x+y\right)^2}{4}}\)
\(=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{\sqrt{9\left(x+y\right)^2}}{\sqrt{4}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{3\left(x+y\right)}{2}\)(vì x > -y <=> x + y > 0)
\(=\frac{3}{x-y}\)
\(C=\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}=\sqrt{\frac{2a}{3}\cdot\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\frac{a}{2}\)(vì a > = 0)
\(D=\frac{1}{a-b}\cdot\sqrt{a^4\left(a-b\right)^2}=\frac{1}{a-b}\cdot a^2\left(a-b\right)=a^2\)(a > b > 0)
câu cuối điều kiện là a>b
\(\frac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}=\frac{a^2\left|a-b\right|}{a-b}=\frac{a^2\left(a-b\right)}{a-b}=a^2\) (vì a>b)
c/
\(\left(x-4\right)P+y^2+2xy+1+\left|2x+3y+1\right|=0\)
\(\Leftrightarrow\frac{\left(x-4\right)\left(x^2-1\right)}{x-4}+y^2+2xy+1+\left|2x+3y+1\right|=0\)
\(\Leftrightarrow x^2+y^2+2xy+\left|2x+3y+1\right|=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left|2x+3y+1\right|=0\)
Do \(\left\{{}\begin{matrix}\left(x+y\right)^2\ge0\\\left|2x+3y+1\right|\ge0\end{matrix}\right.\) \(\forall x;y\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\2x+3y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
ĐKXĐ: \(x\ge0;x\ne4\)
\(P=\left(\frac{\sqrt{x}+2}{\sqrt{x}+3}+\frac{x^2-x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\right)\)
\(P=\left(\frac{x-4+x^2-x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right):\left(\frac{x+3\sqrt{x}+\sqrt{x}+4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}\right)\)
\(P=\left(\frac{x^2-1}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)^2}\right)\)
\(P=\frac{x^2-1}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}.\left(\frac{\sqrt{x}+3}{\sqrt{x}+2}\right)\)
\(P=\frac{x^2-1}{x-4}\)
b/ Để \(P\ge0\Leftrightarrow\frac{x^2-1}{x-4}\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-1\ge0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-1\le0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>4\\-1\le x\le1\end{matrix}\right.\)
Kết hợp với ĐKXĐ \(x\ge0\), \(\Leftrightarrow\left[{}\begin{matrix}x>4\\0\le x\le1\end{matrix}\right.\)