K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2020

Bài 1 :

- Lấy điểm D đối xứng với A qua BC .

Mà tam giác ABC đều .

=> Tứ giác ABCD là hình thoi

=> Tứ giác ABCD là hình bình hành .

=> \(\overrightarrow{AC}=\overrightarrow{BD}\)

Ta có : \(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AD}\)

Ta có : Tứ giác ABCD là hình bình hành ( cmt )

=> \(\overrightarrow{CA}=\overrightarrow{DB}\)

=> \(\overrightarrow{CA}+\overrightarrow{BA}=\overrightarrow{DB}+\overrightarrow{BA}=\overrightarrow{DA}\)

Ta có : \(AD=\left|\overrightarrow{AD}\right|=\left|\overrightarrow{DA}\right|=2AM\) ( Tứ giác ABCD là hình thoi )

Ta có : M là trung điểm BC .

=> \(BM=\frac{1}{2}BC=\frac{a}{2}\)

- Áp dụng định lý pi - ta - go vào tam giác AMB vuông tại M .

=> \(AM^2+\frac{a^2}{4}=a^2\)

=> \(2AM=2\sqrt{a^2-\frac{a^2}{4}}=2\sqrt{\frac{3a^2}{4}}=2\left(\frac{a\sqrt{3}}{2}\right)=a\sqrt{3}\)

b, Ta có : M, N là trung điểm của BC và AC .

=> \(\left\{{}\begin{matrix}2\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{AC}\\2\overrightarrow{BN}=\overrightarrow{BA}+\overrightarrow{BC}\end{matrix}\right.\)

=> \(\overrightarrow{AM}+\overrightarrow{BN}=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{BA}+\overrightarrow{BC}\right)=\frac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{BC}\right)\)

- Lấy E đối xứng với B qua DC .

CMTT : Ta được : \(\overrightarrow{AM}+\overrightarrow{BN}=\frac{1}{2}\left(\overrightarrow{BD}+\overrightarrow{BC}\right)=\frac{1}{2}\overrightarrow{BE}\)

\(\left|\overrightarrow{BE}\right|=\left|\overrightarrow{AD}\right|\)

=> \(\left|\overrightarrow{AM}\right|+\left|\overrightarrow{BN}\right|=\frac{a\sqrt{3}}{2}\)

Bài 2 :

ĐT <=> \(\overrightarrow{CD}-\overrightarrow{CA}+\overrightarrow{EA}-\overrightarrow{ED}=\overrightarrow{0}\)

<=> \(\overrightarrow{AD}+\overrightarrow{DA}=\overrightarrow{0}\) ( đpcm )

14 tháng 12 2016

1) Các vecto bằng vecto EF là:

\(\overrightarrow{EF}=\overrightarrow{DO}=\overrightarrow{OA}=\overrightarrow{CB}\)

NV
18 tháng 9 2021

Do M là trung điểm AB, Q là trung điểm AD

\(\Rightarrow\) MQ là đường trung bình tam giác ABD

\(\Rightarrow\overrightarrow{MQ}=\dfrac{1}{2}\overrightarrow{BD}\)

Tương tự ta có NP là đường trung bình tam giác BCD

\(\Rightarrow\overrightarrow{NP}=\dfrac{1}{2}\overrightarrow{BD}\)

\(\Rightarrow\overrightarrow{NP}=\overrightarrow{MQ}\)

b. MN là đường trung bình tam giác ABC

\(\Rightarrow\overrightarrow{NM}=\dfrac{1}{2}\overrightarrow{CA}\)

PQ là đường trung bình tam giác ACD

\(\Rightarrow\overrightarrow{PQ}=\dfrac{1}{2}\overrightarrow{CA}\)

\(\Rightarrow\overrightarrow{PQ}=\overrightarrow{NM}\)

NV
18 tháng 9 2021

undefined

25 tháng 8 2021

c1 ta có vector AB+vecAC+vecBC=vec0

c2ta co vector OA=-vector OB AOB thẳng hàng nhưng ngược chiều=>vector OA+vectorOB=vectorOA-vector OA=vec0

hojk tốt=>>>>>>>>>>>>>>>>>>>>>>>>>