K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: \(\Leftrightarrow4x^2\left(ax-3\right)-\left(ax-3\right)=0\)

\(\Leftrightarrow\left(ax-3\right)\left(2x-1\right)\left(2x+1\right)=0\)

Trường hợp 1: a=0

=>(2x-1)(2x+1)=0

=>x=1/2 hoặc x=-1/2

Trường hợp 2: a<>0

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\\x=\dfrac{3}{a}\end{matrix}\right.\)

b: \(\Leftrightarrow a^2x^2\left(2x+5\right)-4\left(2x+5\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(a^2x^2-4\right)=0\)

Trường hợp 1: a=0

Phương trình sẽ là 2x+5=0

hay x=-5/2

Trường hợp 2: a<>0

Phương trình sẽ là \(\left(2x+5\right)\left[\left(ax\right)^2-4\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=-\dfrac{2}{a}\\x=\dfrac{2}{a}\end{matrix}\right.\)

1:

a: 2x-3=5

=>2x=8

=>x=4

b: (x+2)(3x-15)=0

=>(x-5)(x+2)=0

=>x=5 hoặc x=-2

2:

b: 3x-4<5x-6

=>-2x<-2

=>x>1

28 tháng 3 2022

a) khi m = 1 ta có pt
x + 1.(x-3) = 6.(x-1) 
=> x + x - 3 = 6x - 6
=> -4x = -3
=> x = 3/4
vậy với m=1 pt có no x =3/4

a: Khi k=0 thì PT sẽ là:

9x^2-25=0

=>x=5/3 hoặc x=-5/3

b: Thay x=-1 vào pt, ta sẽ được:

-k^2+2k+9-25=0

=>-k^2+2k-16=0

=>\(k\in\varnothing\)

Bài 8:

a: Khi a=1 thì phương trình sẽ là \(\left(1-4\right)x-12x+7=0\)

=>-3x-12x+7=0

=>-15x+7=0

=>-15x=-7

hay x=7/15

b: Thay x=1 vào pt, ta được:

\(a^2-4-12+7=0\)

\(\Leftrightarrow\left(a-3\right)\left(a+3\right)=0\)

hay \(a\in\left\{3;-3\right\}\)

c: Pt suy ra là \(\left(a^2-16\right)x+7=0\)

Để phương trình đã cho luôn có một nghiệm duy nhất thì (a-4)(a+4)<>0

hay \(a\notin\left\{4;-4\right\}\)

a: Thay x=-2 vào pt,ta được:

-8+4a+8-4=0

=>4a-4=0

hay a=1

b: Pt sẽ là \(x^3+x^2-4x-4=0\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

=>(x+1)(x-2)(x+2)=0

hay \(x\in\left\{-1;2;-2\right\}\)

3 tháng 3 2020

a) ĐKXĐ : \(x\ne\pm a\).

Với \(a=-3\) khi đó ta có pt :

\(A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left(-9+1\right)}{\left(-3\right)^2-x^2}\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x+3\right)-\left(x+3\right)\left(-3-x\right)}{\left(-3-x\right)\left(-3+x\right)}+\frac{24}{\left(-3-x\right)\left(-3+x\right)}=0\)

\(\Rightarrow x^2-9-\left(-3x-x^2-9-3x\right)+24=0\)

\(\Leftrightarrow2x^2+6x+24=0\)

\(\Leftrightarrow x^2+3x+12=0\) ( vô nghiệm )

Phần b) tương tự.

3 tháng 3 2020

\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3x+1\right)}{a^2-x^2}\)

\(=\frac{x+a}{a-x}+\frac{x-a}{a+x}=\frac{a\left(3+1\right)}{\left(a-x\right)\left(a+x\right)}\)

\(=\frac{\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)}{\left(a-x\right)\left(a+1\right)}=\frac{a\left(3a+1\right)}{\left(a+x\right)\left(a-x\right)}\)

\(\Leftrightarrow\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)=a\left(3a+1\right)\)

\(\Leftrightarrow x^2+2ax+a^2-ax-x^2-a^2+ax=3a^2+a\)

\(\Leftrightarrow2ax=3a^2+a\)

\(\Leftrightarrow x=\frac{3a^2+a}{2a}\left(a\ne0\right)\)

a) Khi x=-3 => \(x=\frac{3\cdot\left(-3\right)^2-3}{2\left(-3\right)}=-13\)

b) a=1

\(\Leftrightarrow x=\frac{3\cdot1^2+1}{2\cdot1}=2\)