K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2015

copy sau đó pết,,ko thì lm ảnh đại diện coi

NV
17 tháng 10 2019

Ta có \(\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}\)

\(\sqrt{3}-\sqrt{2}=\frac{1}{\sqrt{3}+\sqrt{2}}\)

\(\sqrt{2}< \sqrt{3}+\sqrt{2}\Rightarrow\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{3}+\sqrt{2}}\Rightarrow\frac{\sqrt{2}}{2}>\sqrt{3}-\sqrt{2}\)

\(\Rightarrow f\left(\frac{\sqrt{2}}{2}\right)< f\left(\sqrt{3}-\sqrt{2}\right)\)

4 tháng 4 2015

Ta có f(x) = 2015/[x(x + 2)]

=> f(1) = 2015/(1.3) = (2015/2)(1/1 - 1/2)

     f(2) = 2015/(2.4) = (2015/2)(1/2 - 1/4)

     f(3) = 2015/(3.5) = (2015/2)(1/3 - 1/5)

.........................................

=> S = f(1)+f(2)+f(3)+...+f(2015)

        = (2015/2)(1 + 1/2 - 1/2016 - 1/2017)

a: Xét ΔSAC và ΔSDA có 

\(\widehat{ASC}\) chung

\(\widehat{SCA}=\widehat{SAD}\)

Do đó: ΔSAC\(\sim\)ΔSDA

Suy ra: SA/SD=SC/SA

hay \(SA^2=SC\cdot SD\)

b: Xét tứ giác OBSA có \(\widehat{OBS}+\widehat{OAS}=180^0\)

nên OBSA là tứ giác nội tiếp

4 tháng 4 2015

Bài 1

Ta có \(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=\sqrt{\left(1+\frac{1}{2}-\frac{1}{3}\right)^2}\)

Tương tự như trên ta được

S = 1+1/2-1/3+1+1/3-1/4+...+1+1/99-1/100

   = 98 + 1/2 - 1/100

   = 9849/100

29 tháng 7 2017

điều kiện \(x\ge3\)

\(F=\dfrac{3}{\sqrt{x-3}-\sqrt{x}}+\dfrac{3}{\sqrt{x-3}+\sqrt{x}}+\dfrac{x\sqrt{x}+x}{\sqrt{x}+1}\)

\(F=\dfrac{3\left(\sqrt{x-3}+\sqrt{x}\right)+3\left(\sqrt{x-3}-\sqrt{x}\right)}{\left(\sqrt{x-3}-\sqrt{x}\right)\left(\sqrt{x-3}+\sqrt{x}\right)}+\dfrac{x\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(F=\dfrac{3\sqrt{x-3}+3\sqrt{x}+3\sqrt{x-3}-3\sqrt{x}}{\left(\sqrt{x-3}\right)^2-\left(\sqrt{x}\right)^2}+x\)

\(F=\dfrac{6\sqrt{x-3}}{x-3-x}+x=\dfrac{6\sqrt{x-3}}{-3}+x=-2\sqrt{x-3}+x\)