Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=12x^2-4x-6x-2-x-3=12x^2-11x-5\\ b,=12x^2-9x-12x^2-4x+5=5-13x\\ c,=12x^3-4x^2-12x^3-12x^2+7x-3=-16x^2+7x-3\\ d,=\left(x^2-4\right)\left(x^2+4\right)=x^4-16\)
\(a,\Leftrightarrow\left(3x-7\right)\left(3x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{7}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\\ c,\Leftrightarrow4x^2-7x-2-4x^2+4x+3=7\\ \Leftrightarrow-3x=6\Leftrightarrow x=-2\\ d,\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=0\\ \Leftrightarrow4x=-26\Leftrightarrow x=-\dfrac{13}{2}\\ e,\Leftrightarrow x^3+27-x^3+x-27=0\\ \Leftrightarrow x=0\\ f,\Leftrightarrow\left(4x-3\right)\left(4x-3+3x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)
a) 9x2-49=0
(3x)2-72=0
<=> (3x-7)(3x+7)=0
th1: 3x-7=0
<=>3x=7
<=>x=\(\dfrac{7}{3}\)
th2: 3x+7=0
<=>3x=-7
<=>x=\(-\dfrac{7}{3}\)
a/ 2x\(^{^{ }3}\)-3\(^{^{ }3}\)-2x\(^3\)-1\(^{^{ }3}\)=-28
b/x\(^{^{ }3}\)+2\(^{^{ }3}\)-x\(^3\)+2=10
c/3x\(^3\)+5\(^3\)-3x(3x\(^2\)-1)=3x\(^3\)+5\(^3\)-3x\(^3\)+3x=125+3x
d/ x\(^6\)-(x\(^3\)+1)(x\(^2\)-x+1)= x\(^6\)-(x\(^6\)-x\(^4\)+x\(^3\)+x\(^2\)-x+1)=x\(^4\)-x\(^3\)-x\(^2\)+x-1
a) ( 3x + 2 )( x - 1 ) - ( x + 2 )( 3x + 1 ) = 7
<=> 3x2 - x - 2 - ( 3x2 + 7x + 2 ) = 7
<=> 3x2 - x - 2 - 3x2 - 7x - 2 = 7
<=> -8x - 4 = 7
<=> -8x = 11
<=> x = -11/8
b) ( 6x + 5 )( 2x + 3 ) - ( 4x + 3 )( 3x - 2 ) = 8
<=> 12x2 + 28x + 15 - ( 12x2 + x - 6 ) = 8
<=> 12x2 + 28x + 15 - 12x2 - x + 6 = 8
<=> 27x + 21 = 8
<=> 27x = -13
<=> x = -13/27
c) 2x( x + 3 ) - ( x + 1 )( 2x + 1 ) - 5 = 9
<=> 2x2 + 6x - ( 2x2 + 3x + 1 ) - 5 = 9
<=> 2x2 + 6x - 2x2 - 3x - 1 - 5 = 9
<=> 3x - 6 = 9
<=> 3x = 15
<=> x = 5
d) ( 5x + 3 )( 4x - 7 ) - ( 10x + 9 )( 2x - 3 ) = 10
<=> 20x2 - 23x - 21 - ( 20x2 - 12x - 27 ) = 10
<=> 20x2 - 23x - 21 - 20x2 + 12x + 27 = 10
<=> -11x + 6 = 10
<=> -11x = 4
<=> x = -4/11
a, \(\left(3x+2\right)\left(x-1\right)-\left(x+2\right)\left(3x+1\right)=7\Leftrightarrow-8x-4=7\Leftrightarrow x=-\frac{11}{8}\)
b, \(\left(6x+5\right)\left(2x+3\right)-\left(4x+3\right)\left(3x-2\right)=8\Leftrightarrow27x+21=8\Leftrightarrow x=-\frac{13}{27}\)
c, \(2x\left(x+3\right)-\left(x+1\right)\left(2x+1\right)-5=9\Leftrightarrow3x-6=9\Leftrightarrow x=5\)
d, \(\left(5x+3\right)\left(4x-7\right)-\left(10x+9\right)\left(2x-3\right)=10\Leftrightarrow-11x+6=10\Leftrightarrow x=-\frac{4}{11}\)
Bài 1:
a) \(4x\left(3x-1\right)-2\left(3x+1\right)-\left(x+3\right)\)
\(=12x^2-4x-6x-2-x-3\)
\(=12x^2-11x-5\)
b) \(=\left(-2x^2-1xy+2y^2\right)\left(-1x^2y\right)\)
\(=\left[\left(-1x^2y\right)\left(-2x^2\right)\right]-\left[\left(-1x^2y\right).1xy\right]+\left[\left(-1x^2y\right).2y^2\right]\)
\(=\left(2x^4y\right)-\left(-1x^3y^2\right)+\left(-2x^2y^3\right)\)
\(=2x^4y+1x^3y^2-2x^2y^3\)
c) \(4x\left(3x^2-x\right)-\left(2x+3\right)^2\left(6x^2-3x+1\right)\)
\(=\left(4x.3x^2\right)-\left(4x.x\right)-\left[\left(2x\right)^2+2.2x.3+3^2\right]\left(6x^2-3x+1\right)\)
\(=12x^3-4x^2-\left(4x^2+12x+9\right)\left(6x^2-3x+1\right)\)
\(=12x^3-4x^2-\left[4x^2\left(6x^2-3x+1\right)+12x\left(6x^2-3x+1\right)+9\left(6x^2-3x+1\right)\right]\)
\(=12x^3-4x^2-\left[\left(24x^4-12x^3+4x^2\right)+\left(72x^3-36x^2+12x\right)+\left(36x^2-27x+9\right)\right]\)
\(=12x^3-4x^2-24x^4+12x^3-4x^2-72x^3+36x^2-12x-36x^2+27x-9\)
\(=-48x^3-8x^2-24x^4+15x-9\)
1) a) \(\left(3x-1\right)\left(9x^2+3x+1\right)-4x\left(x-5\right)\)
\(=27x^3+9x^2+3x-9x^2-3x-1-4x^2+20x\)
\(=27x^3+\left(9x^2-9x^2-4x^2\right)+\left(3x-3x+20x\right)+\left(-1\right)\)
\(=27x^3-4x^2+20x-1\)
b)\(\left(7x+2\right)\left(3-4x\right)-\left(x+3\right)\left(x^2-3x+9\right)\)
\(=21x-28x^2+6-8x-x^3+3x^2-9x-3x^2+9x-27\)
\(=\left(21x-8x-9x+9x\right)+\left(-28x^2+3x^2-3x^2\right)\)\(+\left(6-27\right)\)\(+\left(-x^3\right)\)
\(=13x-28x^2-21-x^3\)
c)\(\left(4x+3\right)\left(4x-3\right)-\left(2-x\right)\left(4+2x+x^2\right)\)
\(=16x^2-12x+12x-9-8-4x-2x^2+4x+2x^2+x^3\)
\(=\left(16x^2-2x^2+2x^2\right)+\left(-12x+12x-4x+4x\right)\)\(+\left(-9-8\right)\)\(+x^3\)
\(=16x^2-17+x^3\)
d)\(\left(3x-8\right)\left(-5x+6\right)-\left(4x+1\right)\left(3x-2\right)\)
\(=-15x^2+18x+40x-48-12x^2+8x-3x+2\)
\(=\left(-15x^2-12x^2\right)+\left(18x+40x+8x-3x\right)\)\(+\left(-48+2\right)\)
\(=-27x^2+63x-46\)
e)\(\left(3x-6\right)4x-2x\left(3x+5\right)-4x^2\)
\(=12x^2-24x-6x^2-10x-4x^2\)
\(=\left(12x^2-6x^2-4x^2\right)+\left(-24x-10x\right)\)
\(=2x^2-34x\)
f)\(\left(5x-6\right)\left(6x-5\right)-x\left(3x+10\right)\)
\(=30x^2-25x-36x+30-3x^2-10x\)
\(=\left(30x^2-3x^2\right)+\left(-25x-36x-10x\right)+30\)
\(=27x^2-71x+30\)
2) a)\(x\left(x+3\right)-x^2=6\)
\(\Rightarrow x^2+3x-x^2=6\)
\(\Rightarrow\left(x^2-x^2\right)+3x=6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Vậy x=2
b) \(2x\left(x-5\right)+x\left(-2x-1\right)=6\)
\(\Rightarrow2x^2-10x-2x^2-x=6\)
\(\Rightarrow\left(2x^2-2x^2\right)+\left(-10x-x\right)=6\)
\(\Rightarrow-11x=6\)
\(\Rightarrow x=-\dfrac{6}{11}\)
\(\)Vậy \(x=-\dfrac{6}{11}\)
c) x(x+5)-(x+1)(x-2)=7
\(\Rightarrow x^2+5x-x^2+2x-x+2=7\)
\(\Rightarrow\left(x^2-x^2\right)+\left(5x+2x-x\right)=7-2\)
\(\Rightarrow6x=5\)
\(\Rightarrow x=\dfrac{5}{6}\)
Vậy x=\(\dfrac{5}{6}\)
d)\(\left(3x+4\right)\left(6x-3\right)-\left(2x+1\right)\left(9x-2\right)=10\)
\(\Rightarrow18x^2-9x+24x-12-18x^2+4x-9x+2=10\)
\(\Rightarrow\left(18x^2-18x^2\right)+\left(-9x+24x+4x-9x\right)+\left(-12+2\right)=10\)
\(\Rightarrow10x-10=10\)
\(\Rightarrow10x=20\)
\(\Rightarrow x=2\)
Vậy x=2