Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1}{2}\times\frac{2}{3}\times....\times\frac{2003}{2004}\)
\(=\frac{1\times2\times3\times...\times2003}{2\times3\times4\times...\times2014}\)
\(=\frac{1}{2014}\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2002}{2003}\cdot\frac{2003}{2004}\)
\(=\frac{1\cdot2\cdot3\cdot....\cdot2002\cdot2003}{2\cdot3\cdot4\cdot5\cdot....\cdot2003\cdot2004}\)
\(=\frac{1}{2004}\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2003}{2004}=\frac{1\cdot2\cdot3\cdot4....2003}{2\cdot3\cdot4\cdot5....2004}=\frac{1}{2004}\)
Ta đặt A = giá trị biểu thúc trên
A =3/2 * 4/3 * ....*99/98 *100/99
A = 100/2 =50
Vậy giá trị của biểu thức trên =50
tìm số tự nhiên nhỏ nhất biết rằng khi số này cho 23 du 21 khi chia 17du 16
a,Đặt \(A=\frac{1}{1\times4}+\frac{1}{4\times7}+...+\frac{1}{97\times100}\)
\(\Rightarrow3A=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{97\times100}\)
\(\Rightarrow3A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow3A=1-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow A=\frac{99}{300}\)
b, \(\frac{1}{2}\times\frac{2}{3}\times...\times\frac{99}{100}=\frac{1\times2\times...\times99}{2\times3\times...\times1000}=\frac{1}{100}\)
c, \(\frac{3}{4}\times\frac{8}{9}\times...\times\frac{99}{100}=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times...\times\frac{9.11}{10.10}=\frac{1.2.....9}{2.3.....10}\times\frac{3.4.....11}{2.3.....10}=\frac{1}{10}\times\frac{11}{2}=\frac{11}{20}\) (dấu . là dấu nhân)
\(\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{9}\right)\times...\times\left(1-\frac{1}{625}\right)\)
\(=\frac{3}{4}\times\frac{8}{9}\times...\times\frac{623}{624}\)
\(=\frac{1\times3}{2\times2}\times\frac{2\times4}{3\times3}\times...\times\frac{24\times26}{25\times25}\)
\(=\frac{1\times3\times2\times4\times...\times24\times26}{2\times2\times3\times3\times...\times25\times25}\)
Từ đây mình viết nhân là chấm nha mong bạn thông cảm :
\(=\frac{\left(1\cdot2\cdot3\cdot...\cdot24\right)\cdot\left(3\cdot4\cdot5\cdot...\cdot26\right)}{\left(2\cdot3\cdot4\cdot...\cdot25\right)\cdot\left(2\cdot3\cdot4\cdot...\cdot25\right)}\)
\(=\frac{1\cdot26}{25\cdot2}\)
\(=\frac{26}{50}=\frac{13}{25}\)
k tớ nha
\(T=(1-\frac{1}{4}).(1-\frac{1}{9}).(1-\frac{1}{16}).....(1-\frac{1}{576}).(1-\frac{1}{625})\)
\(T=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{575}{576}.\frac{624}{625}\)
\(T=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{23.25}{24.24}.\frac{24.26}{25.25}\)
\(T=\frac{1.2.3...23.24}{2.3.4...24.25}.\frac{3.4.5...25.26}{2.3.4...24.25}\)
\(T=\frac{1}{25}.\frac{26}{2}\)
\(T=\frac{1}{25}.13\)
\(T=\frac{13}{25}\)
TK MK NHA
trong câu hỏi tương tự có đó bn. chỉ cần lắp thêm chút xíu nữa là ok
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{5}\right)\times...\times\left(1-\frac{1}{2004}\right)=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{2003}{2004}=\frac{1}{2004}\)