K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

\(B=\dfrac{1+2+2^2+2^3+.....+2^{2008}}{1-2^{2009}}\)

Đặt \(S=1+2+2^2+2^3+....+2^{2008}\)

\(2S=2\left(1+2+2^2+2^3+....+2^{2008}\right)\)

\(2S=2+2^2+2^3+2^4+.....+2^{2009}\)

\(2S-S=\left(2+2^2+2^3+2^4+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)\)\(S=2^{2009}-1\)

Thay S vào B ta có:

\(B=\dfrac{1-2^{2009}}{2^{2009}-1}=-1\)

14 tháng 7 2017

\(B=\dfrac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}.\)

Đặt phần tử của \(B\)\(C\Rightarrow B=\dfrac{C}{1-2^{2009}}.\)

Ta có:

\(C=1+2+2^2+2^3+...+2^{2008}.\)

\(2C=2\left(1+2+2^2+2^3+...+2^{2008}\right).\)

\(2C=2+2^2+2^3+2^4+...+2^{2009}.\)

\(2C-C=\left(2+2^2+2^3+2^4+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right).\)

\(C=\left(2-2\right)+\left(2^2-2^2\right)+\left(2^3+2^3\right)+...+\left(2^{2008}-2^{2008}\right)+\left(2^{2009}-1\right).\)

\(C=0+0+0+...+0+\left(2^{2009}-1\right).\)

\(C=2^{2009}-1.\)

Thay \(C\) vào \(B.\)

\(\Rightarrow B=\dfrac{C}{1-2^{2009}}=\dfrac{2^{2009}-1}{1-2^{2009}}=-1.\)

\(\Rightarrow B=-1.\)

Vậy.....

~ Học tốt!!! ~

5 tháng 5 2018

Cho \(A=1+2+2^2+2^3+...+2^{2008}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2009}\)

\(\Rightarrow2A-A=2^{2009}-1\)

\(A=2^{2009}-1\)

Thay A vào B, ta có:

\(B=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)

\(B=\frac{2^{2009}-1}{1-2^{2009}}\)

\(B=-1\)

cảm ơn bạn nhiều bạn có rảnh không tớ có vài bài muốn hỏi bạn

23 tháng 5 2021

\(B=\dfrac{1+2+2^2+.............................+2^{2008}}{1-2^{2009}}\)

Đặt \(N=1+2+2^2+..........+2^{2008}\)

\(\Rightarrow2N=2+2^2+2^3+.................+2^{2009}\)

2N-N=\(\left(2+2^2+2^3+............+2^{2009}\right)-\left(1+2+2^2+............+2^{2008}\right)\)

\(N=2^{2009}-1\)

Thay N vào B được

\(B=\dfrac{1-2^{2009}}{2^{2009}-1}=-1\)

Vậy .........................

Chúc bn học tốt

Giải:

\(B=\dfrac{1+2+2^2+2^3+...+2^{2018}}{1-2^{2009}}\) 

Đặt \(A=1+2+2^2+2^3+...+2^{2008}\) 

\(2A=2+2^2+2^3+2^4+...+2^{2009}\) 

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)\) 

\(A=2^{2009}-1\) 

\(\Rightarrow B=\dfrac{2^{2009}-1}{1-2^{2009}}=-1\)

13 tháng 12 2015

7+ 7+ 72 + 73 + ... + 72008 + 72009

= (1 + 7) + (1 + 7) . 73 + ... + (1 + 7) . 72009

=8 + 8 . 73 + ... + 8 . 72009

= 8 . (1 + 73 + ... + 72009)

Vậy tổng trên chia hết cho 8

13 tháng 10 2016

Ta có : ( 70 + 71 + 72 + 73 + ..... + 72008 + 72009 

(=)  ( 1 + 7 + 72 + 7 + ...... + 72008 + 72009 

(=) 1 . ( 1 + 7 ) + 72 . ( 1 + 7 ) + ....... + 72008 . ( 1 + 7 )

(=) ( 1 + 7 ) . ( 1 + 72 + ..... + 72008 )

(=) 8 . ( 1 + 72 + ..... + 72008 ) chia hết cho 8 ( vì 8 chia hết cho 8 )

1 tháng 2 2016

ta có : 22007+22008=(1+2)22007

=>3*22007:22007=3     

1 tháng 4 2022

3 nhân 2/3 bao nhiêu

15 tháng 10 2017

a=2mu 101 - 2

b= 3 mu 2010 - 1

c=5mu 1999-1

d=4 mu n . 4 -4

22 tháng 10 2017

a=2+22+...+2100

2a=22+23+24+...+2101

a=2a-a=a

=> a= 22+23+24+..+2101 -(2+2^2+...+2^100)

=>a= 2^101 -2 

2 tháng 6 2019

#)Giải :

Đặt A = 1 + 2 + 22 + 23 + ... + 22008 

=> 2A = ( 1 + 2 + 22 + 23 + ... + 22008 ) x 2 

=> 2A = 2 + 22 + 23 + 24 + ... + 22009

=> 2A - A = ( 2 + 22 + 23 + 24 + ... + 22009 ) - ( 1 + 2 + 22 + 23 + ... + 22008 ) 

=> A = 22009 - 1

Đặt \(B=\frac{A}{1-2^{2009}}\)

Thay vào biểu thức, ta có : 

\(B=\frac{\left(2^{2009}-1\right)}{1-2^{2009}}=\frac{-\left(1-2^{2009}\right)}{\left(1-2^{2009}\right)}=-1\)

Vậy : ...............................

           #~Will~be~Pens~#

2 tháng 6 2019

\(\text{Đặt }A=1+2+2^2+2^3+...+2^{2008}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2009}\)

\(\Rightarrow2A-A=\left(2+2^2+2^3+2^4+...+2^{2009}\right)-\left(1+2^2+2^2+2^3+...+2^{2008}\right)\)

\(\Rightarrow A=2^{2009}-1\)

\(\frac{1+2+2^2+2^3+2^4+...+2^{2008}}{2^{2009}-1}=1\)

Chúc bạn học tốt !!!

P/s: Mình nghĩ đề sai

24 tháng 4 2017

1.a)A = (1 - 1/3)(1-2/5)...(1-5/5)....(1-9/5)

      =(1-1/3)....0.....(1-9/5)

      =0

     =>đpcm.

b)ta xét:

1/22 = 1/2x2 < 1/1x2

.............

1/8= 1/8x8 <1/7x8

=>B < 1/1x2 + 1/2x3 ... + 1 + 1/7x8

<=> B <1 - 1/2 + 1/2  - 1/3  + ... + 1/7 - 1/8

<=> B < 1 - 1/8 = 7/8 < 1

=> B < 1 => đpcm

2.a) Đặt m = 2007(2006+2007) = 2006(2006 + 2007) + (2006+2007)

      Đặt n = 2006(2007+2008) = 2006(2006+2007) + (2006 + 2006)

Ta thấy : (2006+2007) > (2006 + 2006) => m > n , áp dụng công thức "a.d > c.d <=> a/b > b/d (a,c thuộc Z// b,d thuộc N)

=> A > B

   b)ta có: D = 196 + 197/197 + 198 = (196/197+198) + (197/197+198) < 196/197 + 197/198 = C

=> C > D

c)gọi 2010 là a

ta thấy : (a + 1)(a-3) = (a - 1)(a - 3) + 2(a - 3) < (a - 1)(a - 3) + 2(a - 1) = (a - 1)(a - 1)

áp dụng: ad > bc <=> a/b > c/d ( a,b,c,d thuộc Z// b,d > 0)

=> E > F