Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra, ta có: \(x^2-y=y^2-x\Leftrightarrow x^2-y^2=-x+y\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=-\left(x-y\right)\)
\(\Leftrightarrow\left(x+y\right)=-1\)
Ta lại có: \(A=x^2+2xy+y^2-3x-3y=\left(x+y\right)^2-3\left(x+y\right)\)
Thay x+y=-1 vào biểu thức A, ta được: \(A=\left(-1\right)^2-3.\left(-1\right)=1+3=4\)
Vậy A=4
Ta có
(I): 4 x 2 + 4 x – 9 y 2 + 1 = ( 4 x 2 + 4 x + 1 ) – 9 y 2 = ( 2 x + 1 ) 2 – ( 3 y ) 2
= (2x + 1 + 3y)(2x + 1 – 3y) nên (I) đúng
Và
(II):
5 x 2 – 10 x y + 5 y 2 – 20 z 2 = 5 ( x 2 – 2 x y + y 2 – 4 z 2 ) = 5 [ ( x – y ) 2 – ( 2 z ) 2 ]
= 5(x – y – 2z)(x – y + 2z) nên (II) sai
Đáp án cần chọn là: A
a) (x - 1)(x - 2). b) 4(x - 2)(x - 7).
c) (x + 2)(2x +1). d) (x - l)(2x - 7).
e) (2x + 3y - 3)(2x - 3y +1). g) (x - 3)( x 3 + x 2 - x +1).
h) (x + y)(x + y-l)(x + y + l).
a) Ta có: \(x^2+2x-y^2+1\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1-y\right)\left(x+1+y\right)\)
b) Ta có: \(x^2+3x-y^2+3y\)
\(=\left(x^2-y^2\right)+\left(3x+3y\right)\)
\(=\left(x-y\right)\left(x+y\right)+3\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+3\right)\)
c) Ta có: \(3\left(x+3\right)-x^2+9\)
\(=3\left(x+3\right)-\left(x^2-9\right)\)
\(=3\left(x+3\right)-\left(x-3\right)\left(x+3\right)\)
\(=\left(x+3\right)\left[3-\left(x-3\right)\right]\)
\(=\left(x+3\right)\left(3-x+3\right)=\left(x+3\right)\left(-x+6\right)\)
\(=\left(x+3\right)\left(6-x\right)\)
b, \(x^2+3x-y^2+3y\)
=\(\left(x^2-y^2\right)+\left(3x+3y\right)\)
=(x+y)(x-y)+3(x+y)
=(x+y)(x-y+3)
c,\(3\left(x+3\right)-x^2+9\)
=\(3\left(x+3\right)-\left(x^2-9\right)\)
=3(x+3)-(x+3)(x-3)
=(x+3)(3-x+3)
=(x+3)x
Bạn cần làm gì với những đa thức này?
Mình cần phân tích đa thức thành nhân tử