Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:ĐKXĐ: \(\left\{\begin{matrix} 6-x\geq 0\\ x-1\geq 0\\ 1+\sqrt{x-1}\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 6\\ x\geq 1\end{matrix}\right.\) hay $x\in [1;6]$
Đáp án D
a: \(n\left(A\cap B\right)< =n\left(A\right)\le n\left(A\cup B\right)\)
b: \(n\left(A\ B\right)< =n\left(A\right)+n\left(B\right)< =n\left(A\cup B\right)\)
\(\frac{3n+2}{2n-1}\in Z\Rightarrow\frac{2\left(3n+2\right)}{2n-1}\in Z\Rightarrow3+\frac{7}{2n-1}\in Z\)
\(\Rightarrow\frac{7}{2n-1}\in Z\Rightarrow2n-1=Ư\left(7\right)=\left\{-1;1;7\right\}\)
\(\Rightarrow n=\left\{0;1;4\right\}\)
Vậy \(A=\left\{0;1;4\right\}\)
1: \(A=\left\{0;1;2;3;4;5\right\}\)