K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

a: \(P=-\left|5-x\right|+2019\le2019\forall x\)

Dấu '=' xảy ra khi x=5

31 tháng 10 2021

b) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^n.3^2+3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)

\(=3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

25 tháng 12 2015

\(P=-x^2-8x+5\)

\(=-x^2-8x-16+21\)

\(=-\left(x^2+8x+16\right)+21\)

\(=21-\left(x+4\right)^2\)

\(\left(x+4\right)^2\ge0\)

\(-\left(x+4\right)^2\le0\)

\(21-\left(x+4\right)^2\le21\)

\(P_{max}=21\Leftrightarrow x=-4\)

5 tháng 2 2017

Mấy bạn kia làm sai hết rồi !!

P = |2013 - x| + |2014 - x| = |2013 - x| + |x - 2014|

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

P = |2013 - x| + |x - 2014| ≥ |2013 - x + x - 2014| =|- 1| = 1

Dấu "=" xảy ra <=> (2013 - x)(x - 2014) ≥ 0 <=> 2013 ≤ x ≤ 2014

Dậy gtnn của P là 1 <=> 2013 ≤ x ≤ 2014

4 tháng 2 2017

\(\left|2013-x\right|+\left|2014-x\right|\ge\left|2013-x+2014-x\right|\)

\(\left|2013-x\right|+\left|2014-x\right|\ge\left|4027\right|\)

\(\left|2013-x\right|+\left|2014-x\right|\ge4027\)

\(\Rightarrow\)\(Min_P=4027\)

12 tháng 11 2021

GTNN là -3 khi x =-2