K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

54444

10 tháng 3 2019

\(b.\frac{1}{3}+\frac{3}{35}< \frac{x}{210}< \frac{4}{7}+\frac{3}{5}+\frac{1}{3}\)

\(\Leftrightarrow\frac{35+9}{105}< \frac{x}{210}< \frac{60+63+35}{105}\)

\(\Leftrightarrow\frac{44}{105}< \frac{x}{210}< \frac{158}{105}\)

\(\Leftrightarrow\frac{88}{210}< \frac{x}{210}< \frac{316}{210}\)

Suy ra \(x\in\left\{89;90;100;...;313;314;315\right\}\)

\(c.\left(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.21}\right)-x+\frac{221}{231}=\frac{4}{3}\)

\(\Leftrightarrow\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{21}\right)-x+\frac{221}{231}=\frac{4}{3}\)

\(\Leftrightarrow\frac{1}{11}-\frac{1}{21}-x+\frac{221}{231}=\frac{4}{3}\)

\(\Leftrightarrow\frac{21-11-231x+221}{231}=\frac{308}{231}\)

\(\Leftrightarrow-231x=308-21+11-221\)

\(\Leftrightarrow-231x=77\)

\(\Leftrightarrow x=-\frac{77}{231}=-\frac{1}{3}\)

^^

Bài 1:a. Tìm số tự nhiên nhỏ nhất mà số đó chia cho 5, cho 7, cho 9 có số dư theo thứ tự là 3,4,5?b. Cho số A có bốn chữ số \(\in\left\{0;1;2;3\right\}\) được viết theo nguyên tắc: Chữ số hàng nghìn bằng số chữ số 0 có trong số A; chữ số hàng trăm bằng số chữ số 1 có trong số A; chữ số hàng chục bằng số chữ số 2 có trong số A; chữ số hàng đơn vị bằng số chữ số 3 có trong số A. Tìm số...
Đọc tiếp

Bài 1:

a. Tìm số tự nhiên nhỏ nhất mà số đó chia cho 5, cho 7, cho 9 có số dư theo thứ tự là 3,4,5?

b. Cho số A có bốn chữ số \(\in\left\{0;1;2;3\right\}\) được viết theo nguyên tắc: Chữ số hàng nghìn bằng số chữ số 0 có trong số A; chữ số hàng trăm bằng số chữ số 1 có trong số A; chữ số hàng chục bằng số chữ số 2 có trong số A; chữ số hàng đơn vị bằng số chữ số 3 có trong số A. Tìm số A đã cho?

Bài 2: Tính giá trị các biểu thức sau bằng cách hợp lý:

\(A=2880:\left\{\left[119-\left(13-6\right)^2\right].2-5^2.2^2\right\}\)

\(B=\frac{\frac{-2}{13}-\frac{2}{15}+\frac{2}{19}}{\frac{4}{13}+\frac{4}{15}-\frac{4}{19}}\)

\(C=\frac{2}{143}-\frac{6}{187}-\frac{4}{357}-\frac{6}{91}\)

\(D=\frac{\left(\frac{7}{15}+\frac{1414}{4545}+\frac{34}{153}\right):3\frac{3}{23}-\frac{3}{11}\left(2\frac{2}{3}-1,75\right)}{\left(\frac{3}{7}-0,25\right)^2:\left(\frac{3}{28}-\frac{1}{24}\right)}\)

Bài 3: Tìm x biết :

\(\frac{\left(27\frac{5}{19}-26\frac{4}{13}\right)\left(\frac{3}{4}+\frac{19}{59}-\frac{3}{118}\right)}{\left(\frac{3}{4}+x\right)\frac{27}{33}}=\frac{\frac{1}{13.16}+\frac{1}{14.17}}{\frac{1}{13.15}+\frac{1}{14.16}+\frac{1}{15.17}}\)

 

 

 

 

 

 

 

 

1
14 tháng 8 2016

a) số chia cho 9 dư 5 có dạng 9a+5 
ta có 9a+5 chia 7 dư 2a+5 
theo đề bài ta lại có 2a+5 chia 7 dư 4 nên có dạng 2a+5=7b+4 =>a=(7b-1)/2 
số cần tìm luc này có dạng 63b/2+1/2 chia 5 du 3b/2+1/2 
như vậy ta cần tìm số b nhỏ nhất sao cho 3b/2+1/2 chia 5 dư 3 hay số 3b/2-5/2 chia hết cho 5 
=>3b/10-1/2 là số nguyên 
=>3b-5 chia hết cho 10 
=>b=5 
=>số cần tìm là 63*5/2+1/2=158

Bài 1:a. Tìm số tự nhiên nhỏ nhất mà số đó chia cho 5, cho 7, cho 9 có số dư theo thứ tự là 3,4,5?b. Cho số A có bốn chữ số \(\in\left\{0;1;2;3\right\}\) được viết theo nguyên tắc : Chữ số hàng nghìn bằng số chữ số 0 có trong số A; chữ số hàng trăm bằng số chữ số 1 có trong số A; chữ số hàng chục bằng số chữ số 2 có trong số A; chữ số hàng đơn vị bằng số chữ số 3 có trong số A. Tìm số...
Đọc tiếp

Bài 1:

a. Tìm số tự nhiên nhỏ nhất mà số đó chia cho 5, cho 7, cho 9 có số dư theo thứ tự là 3,4,5?

b. Cho số A có bốn chữ số \(\in\left\{0;1;2;3\right\}\) được viết theo nguyên tắc : Chữ số hàng nghìn bằng số chữ số 0 có trong số A; chữ số hàng trăm bằng số chữ số 1 có trong số A; chữ số hàng chục bằng số chữ số 2 có trong số A; chữ số hàng đơn vị bằng số chữ số 3 có trong số A. Tìm số A đã cho?

Bài 2: Tính giá trị các biểu thức sau bằng cách hợp lý:

\(A=2880:\left\{\left[119-\left(13-6\right)^2\right].2-5^2.2^2\right\}\)

\(B=\frac{\frac{-2}{13}-\frac{2}{15}+\frac{2}{19}}{\frac{4}{13}+\frac{4}{15}+\frac{4}{19}}\)

\(C=\frac{2}{143}-\frac{6}{187}-\frac{4}{357}-\frac{6}{91}\)

\(D=\frac{\left(\frac{7}{15}+\frac{1414}{4545}+\frac{34}{135}\right):3\frac{3}{23}-\frac{3}{11}\left(2\frac{2}{3}-1,75\right)}{\left(\frac{3}{7}-0,25\right)^2:\left(\frac{3}{28}-\frac{1}{24}\right)}\)

Bài 3: Tìm x biết : 

\(\frac{\left(27\frac{5}{19}-26\frac{4}{13}\right)\left(\frac{3}{4}+\frac{19}{59}-\frac{3}{118}\right)}{\left(\frac{3}{4}+x\right)\frac{27}{33}}=\frac{\frac{1}{13.16}+\frac{1}{14.17}}{\frac{1}{13.15}+\frac{1}{14.16}+\frac{1}{15.17}}\)

 

 

 

 

 

 

1
13 tháng 8 2016

Bài 1 :

a.  Gọi số cần tìm là a.

Ta có:  a : 5 dư 3 

             a : 7 dư 4    => 2a -1 chia hết cho 5; 7; 9 mà 

             a : 9 dư 5    a nhỏ nhất => 2a - 1 nhỏ nhất

                                  => 2a - 1 \(\in\) BCNN\(\left(5,7,9\right)\) = 315

                                  => 2a = 316 => a = 158

          Vậy số tự nhiên cần tìm là 158

Bài 2:

A = 2880 : \(\left\{\left[119-\left(13-6\right)^2\right].2-5^2.2^2\right\}\)

A = 2880 : \(\left\{\left[119-7^2\right].2-25.4\right\}\)

A = 2880 : \(\left\{\left[119-49\right].2-100\right\}\)

A = 2880 : \(\left\{70.2-100\right\}\)

A = 2880 : \(\left\{140-100\right\}\)

A = 2880 : 40

A = 72

B = \(\frac{\frac{-2}{13}-\frac{3}{15}+\frac{3}{10}}{\frac{4}{13}+\frac{4}{15}+\frac{4}{10}}\)

B = \(\frac{\frac{-23}{65}+\frac{3}{10}}{\frac{112}{195}+\frac{4}{10}}\)

B = \(\frac{-3}{20}\)

NHƯ VẬY MÀ BẠN BẢO TÍNH HỢP LÍ SAO TOÀN NHỮNG PHÉP TÍNH RA SỐ TO KHỦNG MÌNH THẤY CHẲNG HỌP LÍ TÍ NÀO CẢ NÊN MÌNH KHÔNG LÀM BÀI NÀY NỮA NHƯNG NHỚ TÍCH CHO MÌNH NHA

 

1/ Tìm phần nguyên x của hỗn số, biết rằng:a/ \(\frac{561}{143}< x\frac{12}{13}< \frac{1463}{247}\)                      b/ \(x\frac{3}{4}=\frac{21983}{7996}\)2/ Hãy tìm tất cả các phân số sao cho:a/ Có mẫu là 20, lớn hơn \(\frac{2}{13}\)và nhỏ hơn \(\frac{5}{13}\).b/ Có tử là 3, lớn hơn \(\frac{1}{8}\)và nhỏ hơn \(\frac{1}{7}\).c/ Lớn hơn \(\frac{5}{7}\)và nhỏ hơn \(\frac{5}{6}\).3/ Một phân số nhỏ hơn 1 tăng lên hay giảm đi khi...
Đọc tiếp

1/ Tìm phần nguyên x của hỗn số, biết rằng:

a/ \(\frac{561}{143}< x\frac{12}{13}< \frac{1463}{247}\)                      b/ \(x\frac{3}{4}=\frac{21983}{7996}\)

2/ Hãy tìm tất cả các phân số sao cho:

a/ Có mẫu là 20, lớn hơn \(\frac{2}{13}\)và nhỏ hơn \(\frac{5}{13}\).

b/ Có tử là 3, lớn hơn \(\frac{1}{8}\)và nhỏ hơn \(\frac{1}{7}\).

c/ Lớn hơn \(\frac{5}{7}\)và nhỏ hơn \(\frac{5}{6}\).

3/ Một phân số nhỏ hơn 1 tăng lên hay giảm đi khi ta cộng cùng 1 số tự nhiên khác 0 vào tử và mẫu của phân số? Vì sao? (Xét trường hợp phân số lớn hơn 1).

4/ Tính tổng:

a/ \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)

b/ \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

c/ \(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)

d/ \(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

e/ \(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)

5/ Tìm x, biết:

a/ \(\left(\frac{11}{12}+\frac{11}{12.23}+\frac{11}{23.34}+...+\frac{11}{89.100}\right)+x=\frac{5}{3}\)

b/ \(\left(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.21}\right)-x+4+\frac{221}{231}=\frac{7}{3}\)

3
25 tháng 6 2017

Sao nhiều quá vại??

mk lm k nổi đâu

Dài quá nhìn lòi bảng họng lun ak

26 tháng 6 2017

Bài : 4 

a/ \(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+....+\frac{1}{24\cdot25}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{24}-\frac{1}{25}\)

\(=\frac{1}{5}-\frac{1}{25}\)

\(=\frac{4}{25}\)

b/ \(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+....+\frac{2}{99\cdot101}\)

\(=\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+...+\frac{101-99}{99\cdot101}\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{1}-\frac{1}{101}\)

\(=\frac{100}{101}\)

c/ \(\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+\frac{5^2}{11\cdot16}+\frac{5^2}{16\cdot21}+\frac{5^2}{21\cdot26}+\frac{5^2}{26\cdot31}\)

\(=\frac{25}{1\cdot6}+\frac{25}{6\cdot11}+\frac{25}{11\cdot16}+\frac{25}{16\cdot21}+\frac{25}{21\cdot26}+\frac{25}{26\cdot31}\)

\(=\frac{6-1}{1\cdot6}+\frac{11-6}{6\cdot11}+....+\frac{31-26}{26\cdot31}\)

\(=\frac{25}{5}\cdot\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{26}-\frac{1}{31}\right)\)

\(=\frac{25}{5}\cdot\left(\frac{1}{1}-\frac{1}{31}\right)\)

\(=\frac{25}{5}\cdot\frac{30}{31}\)

\(=\frac{150}{31}\)

d/ \(\frac{3}{1\cdot3}+\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+....+\frac{3}{49\cdot51}\)

\(=\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+....+\frac{51-49}{49\cdot51}\)

\(=\frac{3}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{3}{2}\cdot\left(\frac{1}{1}-\frac{1}{51}\right)\)

\(=\frac{3}{2}\cdot\frac{50}{51}\)

\(=\frac{25}{17}\)

e/ \(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)

\(=\frac{1}{1\cdot7}+\frac{1}{7\cdot13}+\frac{1}{13\cdot19}+\frac{1}{19\cdot25}+\frac{1}{25\cdot31}+\frac{1}{31\cdot37}\)

\(=\frac{7-1}{1\cdot7}+\frac{13-7}{7\cdot13}+....+\frac{37-31}{31\cdot37}\)

\(=\frac{1}{6}\cdot\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+....+\frac{1}{31}-\frac{1}{37}\right)\)

\(=\frac{1}{6}\cdot\left(1-\frac{1}{37}\right)\)

\(=\frac{1}{6}\cdot\frac{36}{37}\)

\(=\frac{6}{37}\)

12 tháng 9 2021

a ) 

Theo bài ra: (a - 4) chia hết cho 5 => (a - 4) + 20 chia hết cho 5 => a + 16 chia hết cho 5

(a - 5) chia hết cho 7 => (a - 5) + 21 chia hết cho 7 => a + 16 chia hết cho 7

(a - 6) chia hết cho 11 => (a - 6) + 22 chia hết cho 11 => a + 16 chia hết cho 11 

=> a + 16 thuộc BC(5; 7; 11) 

Mà BCNN(5; 7; 11) = 385

=> a + 16 thuộc B(385) = {0; 385; 770; ...}

=> a thuộc {-16; 369; 754;...}

Vì a là số tự nhiên nhỏ nhất

=> a = 369 

b ) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}.\)

Ta có : 

\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)

.....................

\(\frac{1}{2012^2}=\frac{1}{2012.2012}< \frac{1}{2011.2012}\)

Ta có :

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1-\frac{1}{2012}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}.< \frac{2011}{2012}\)

Mà \(\frac{2011}{2012}< 1\)

\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1\)

12 tháng 9 2021

\(b)\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}\)

\(< \)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{2010.2011}+\frac{1}{2011.2012}\)

\(< \)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(< \)\(1-\frac{1}{2012}\)\(=\frac{2011}{2012}< 1\)

Vậy Biểu thức    \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}\)\(< 1\)

19 tháng 1 2020

1a Để \(\frac{x+1}{2}\)=\(\frac{8}{x+1}\)

\(\Rightarrow\)x+1.(x+1)=2.8=16

\(\Rightarrow\)x+1(x+1)=4.4

suy ra x+1=4

x=4-1

x=3

18 tháng 2 2020

a)(x+1)(x+1)=16

(x+1)^2=4^2

+)x+1=4

x=3

+)x+1=-4

x=-5

20 tháng 4 2015

\(\left(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.20}\right)-x+\frac{221}{231}=\frac{4}{3}\)

\(=\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{20}\right)-x=\frac{4}{3}-\frac{221}{231}\)

\(=\left(\frac{1}{11}-\frac{1}{20}\right)-x=\frac{29}{77}\)

\(=\frac{9}{220}-x=\frac{29}{77}\)

\(x=\frac{9}{220}-\frac{29}{77}\)

 

20 tháng 4 2015

bạn ơi chỗ \(\frac{2}{19.20}\) có phải là \(\frac{2}{19.21}\) không