Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)
Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn
Vậy trong khai triển trên ko có số hạng chứa \(x^8\)
b/ \(\left(1-x^2+x^4\right)^{16}\)
\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)
\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)
Hệ số của số hạng chứa \(x^{16}\):
\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)
c/ SHTQ của khai triển \(\left(1-2x\right)^5\) là \(C_5^k\left(-2\right)^kx^k\)
Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)
SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)
Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)
\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)
\(\left(3-1\right)^n=1024\Leftrightarrow2^n=2^{10}\Rightarrow n=10\)
\(\left(3-x^2\right)^{10}\) có SHTQ: \(C_{10}^k.3^k.\left(-1\right)^{10-k}.x^{20-2k}\)
Số hạng chứa \(x^{12}\Rightarrow20-2k=12\Rightarrow k=4\)
Hệ số: \(C_{10}^4.3^4=...\)
Làm xong rồi nhấn gửi thì lỗi, làm lại từ đầu nên chỉ làm 2 câu thôi, 2 câu sau bạn tự làm tương tự:
a/ \(\sum\limits^8_{k=0}C_8^kx^{2k}\left(1-x\right)^k=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C_8^kC_k^i\left(-1\right)^ix^{2k+i}\)
Số hạng chứa \(x^8\) có:
\(\left\{{}\begin{matrix}2k+i=8\\0\le i\le k\le8\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;4\right);\left(2;3\right)\)
Hệ số: \(C_8^4C_4^0.\left(-1\right)^0+C_8^3C_3^2.\left(-1\right)^2\)
b/ \(1+x+x^2+x^3=\left(1+x\right)\left(1+x^2\right)\)
\(\Rightarrow\left(1+x+x^2+x^3\right)^{10}=\left(1+x\right)^{10}\left(1+x^2\right)^{10}\)
\(=\sum\limits^{10}_{k=0}C_{10}^kx^k\sum\limits^{10}_{i=0}C_{10}^ix^{2i}=\sum\limits^{10}_{k=0}\sum\limits^{10}_{i=0}C_{10}^kC_{10}^ix^{2i+k}\)
Số hạng chứa \(x^5\) có:
\(\left\{{}\begin{matrix}2i+k=5\\0\le k\le10\\0\le i\le10\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;5\right);\left(1;3\right);\left(2;1\right)\)
Hệ số: \(C_{10}^0C_{10}^5+C_{10}^1C_{10}^3+C_{10}^2C_{10}^1\)
Số hạng tổng quát của khai triển: \(C_7^k.x^k.2^{7-k}\)
Số hạng chứa \(x^5\Leftrightarrow k=5\)
Hệ số của số hạng đó là: \(C_7^5.2^2=...\)
\(\left(x+x^{-1}\right)^n=\sum\limits^n_{k=0}C_n^kx^k\left(x^{-1}\right)^{n-k}=\sum\limits^n_{k=0}C_n^kx^{2k-n}\)
Theo bài ra ta có: \(C_n^2-C_n^1=35\)
\(\Leftrightarrow\frac{n!}{2!\left(n-2\right)!}-\frac{n!}{\left(n-1\right)!}=35\)
\(\Leftrightarrow\frac{n\left(n-1\right)}{2}-n=35\)
\(\Leftrightarrow n^2-3n-70=0\Rightarrow n=10\)
Số hạng ko chứa x \(\Rightarrow2k-n=0\Rightarrow k=\frac{n}{2}=5\)
Số hạng đó là \(C_{10}^5\)