Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
a)\(2009^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-15^3\right)}=2009^{\left(1000-1^3\right)...\left(1000-10^3\right)...\left(1000-15^3\right)}=2009^0=1\)
b)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...0...\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+....+\frac{1}{32}\left(1+2+3+...+32\right)\)
\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+....+\frac{1}{32}.\frac{32.\left(32+1\right)}{2}\)
\(=1+\frac{2+1}{2}+\frac{3+1}{2}+....+\frac{32+1}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+....+\frac{33}{2}\)
\(\frac{2+3+4+....+33}{2}\)
\(=\frac{\frac{33\left(33+1\right)}{2}-1}{2}=280\)
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right).....\left(\frac{1}{100^2}-1\right)\)
=> \(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)....\left(1-\frac{1}{100^2}\right)\)
\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.....\frac{100^2-1}{100^2}\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.....\frac{99.101}{100^2}\)
\(=\frac{1.2....99}{2.3....100}.\frac{3.4....101}{2.3....100}\)
\(=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)
=> \(A=-\frac{101}{200}< -\frac{1}{2}\)