Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\) -\(\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\)
=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)-2
=\(\dfrac{-\sqrt{x}}{\sqrt{x}+1}\)
thay vào A=\(\dfrac{-2}{3}\)
b)
A=-1+\(\dfrac{1}{\sqrt{x}+1}\) \(\ge\) -1+\(\dfrac{1}{1}\)=1(vì \(\sqrt{x}\)\(\ge\) 0)
Dấu bằng xẩy ra\(\Leftrightarrow\) x=0
chỗ đó cho thêm x-1 nha
đấu >= thay thành <= rùi nhân thêm x-1>=-1 nữa là lớn nhất bằng 0
a,\(ĐK:x>0,x\ne1,x\ne4\)
\(A=\left[\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\left[\dfrac{x-1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right]\)
\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{3}=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
b,\(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)
\(=>A=\dfrac{\sqrt{2}-3}{3\sqrt{2}-3}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}-1>0\\\sqrt{x}-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>1\\x>4\end{matrix}\right.\) \(\Leftrightarrow x>4\)
\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
\(=\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)
\(=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
b) Ta có \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(2-1\right)^2=1\)
Thay \(x=1\) vào \(A\), ta được:
\(A=\dfrac{\sqrt{1}-2}{3\sqrt{1}}=\dfrac{1-2}{3}=-\dfrac{1}{3}\)
Lời giải:
ĐK: $x\geq 0; x\neq 1$
\(A=\frac{\sqrt{x}-2}{(\sqrt{x}-1)(\sqrt{x}+1)}.\frac{(\sqrt{x}-1)^2}{2}-\frac{\sqrt{x}+2}{(\sqrt{x}-1)^2}.\frac{(\sqrt{x}-1)^2}{2}\)
\(=\frac{(\sqrt{x}-2)(\sqrt{x}-1)}{2(\sqrt{x}+1)}-\frac{\sqrt{x}+2}{2}=\frac{(\sqrt{x}-2)(\sqrt{x}-1)-(\sqrt{x}+2)(\sqrt{x}+1)}{2(\sqrt{x}+1)}=\frac{-6\sqrt{x}}{2(\sqrt{x}+2)}=\frac{-3\sqrt{x}}{\sqrt{x}+2}\)
Vì $x\geq 0$ nên $3\sqrt{x}\geq 0; \sqrt{x}+2>0$
$\Rightarrow \frac{3\sqrt{x}}{\sqrt{x}+2}\geq 0$
$\Rightarrow A\leq 0$ hay $A_{\max}=0$ khi $x=0$
ĐKXĐ: \(x>0;x\ne1\)
\(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{\left(x+2\sqrt{x}\right).x.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\dfrac{x}{\sqrt{x}-1}\)
b.
\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)
\(\Rightarrow A=\dfrac{4+2\sqrt{3}}{\sqrt{3}+1-1}=\dfrac{4+2\sqrt{3}}{\sqrt{3}}=\dfrac{6+4\sqrt{3}}{3}\)
c.
Để \(\sqrt{A}\) xác định \(\Rightarrow\sqrt{x}-1>0\Rightarrow x>1\)
Ta có:
\(\sqrt{A}=\sqrt{\dfrac{x}{\sqrt{x}-1}}=\sqrt{\dfrac{x}{\sqrt{x}-1}-4+4}=\sqrt{\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge\sqrt{4}=2\)
Dấu "=" xảy ra khi \(\sqrt{x}-2=0\Rightarrow x=4\)
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1$
a)
\(A=\frac{x+\sqrt{x}+1}{x+1}:\left[\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{(\sqrt{x}-1)(x+1)}\right]\)
\(=\frac{x+\sqrt{x}+1}{x+1}:\frac{x+1-2\sqrt{x}}{(\sqrt{x}-1)(x+1)}=\frac{x+\sqrt{x}+1}{x+1}.\frac{(\sqrt{x}-1)(x+1)}{(\sqrt{x}-1)^2}=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}\)
b)
\(A=7\Leftrightarrow x+\sqrt{x}+1=7(\sqrt{x}-1)\)
\(\Leftrightarrow x-6\sqrt{x}+8=0\Leftrightarrow (\sqrt{x}-2)(\sqrt{x}-4)=0\)
\(\Leftrightarrow \left[\begin{matrix} x=4\\ x=16\end{matrix}\right.\) (đều thỏa mãn)
c)
\(x=2(2+\sqrt{3})=4+2\sqrt{3}=3+1+2\sqrt{3.1}=(\sqrt{3}+1)^2\Rightarrow \sqrt{x}=\sqrt{3}+1\)
\(\Rightarrow A=\frac{4+2\sqrt{3}+\sqrt{3}+1+1}{\sqrt{3}}=\frac{6+3\sqrt{3}}{\sqrt{3}}=3+2\sqrt{3}\)
d)
\(A< 1\Leftrightarrow \frac{x+\sqrt{x}+1}{\sqrt{x}-1}-1<0\Leftrightarrow \frac{x-2\sqrt{x}+2}{\sqrt{x}-1}<0\)
\(\Leftrightarrow \frac{(\sqrt{x}-1)^2+1}{\sqrt{x}-1}<0\Leftrightarrow \sqrt{x}-1< 0\Leftrightarrow 0\leq x< 1\)
\(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}}\right).\dfrac{\left(1-x\right)^2}{2}\) (ĐK:\(x>0;x\ne1\))
\(=\left[\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}\right].\dfrac{\left(x-1\right)^2}{2}\)
\(=\left[\dfrac{\left(\sqrt{x}-2\right)\sqrt{x}}{\left(x-1\right)\sqrt{x}}-\dfrac{x-1}{\sqrt{x}\left(x-1\right)}\right].\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{x-2\sqrt{x}-x+1}{\sqrt{x}\left(x-1\right)}.\dfrac{\left(x-1\right)^2}{2}=\dfrac{-2\sqrt{x}+1}{\sqrt{x}\left(x-1\right)}.\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{\left(-2\sqrt{x}+1\right)\left(x-1\right)}{2\sqrt{x}}\)
Sai đề ko em?
a) Ta có: \(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}}\right)\cdot\dfrac{\left(1-x\right)^2}{2}\)
\(=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)-\left(x-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2}{2}\)
\(=\dfrac{x-2\sqrt{x}-x+1}{\sqrt{x}}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2}\)
\(=\dfrac{\left(-2\sqrt{x}+1\right)\left(x-1\right)}{2\sqrt{x}}\)
\(a,A=\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{x-2-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
a: Khi x=4 thì \(A=\left(\dfrac{2+2}{2+1}-\dfrac{2\cdot2-2}{2-1}\right)\cdot\left(4-1\right)=\dfrac{1}{3}\cdot3=1\)
b: \(A=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-2\right)\cdot\left(x-1\right)\)
\(=\dfrac{\sqrt{x}+2-2\sqrt{x}-2}{\sqrt{x}+1}\cdot\left(x-1\right)=-\sqrt{x}\left(\sqrt{x}-1\right)\)