Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(A=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\)
\(=\left(\dfrac{\left(x\sqrt{x}-1\right)\left(x+\sqrt{x}\right)-\left(x\sqrt{x}+1\right)\left(x-\sqrt{x}\right)}{\left(x-\sqrt{x}\right)\left(x+\sqrt{x}\right)}\right):\dfrac{2\left(\sqrt{x}-1\right)^2}{x-1}\)
\(=\left(\dfrac{\left(x\sqrt{x}-1\right)\left(x+\sqrt{x}\right)-\left(x\sqrt{x}+1\right)\left(x-\sqrt{x}\right)}{x^2-x}\right).\dfrac{x-1}{2\left(\sqrt{x}-1\right)^2}\)
\(=\left(\dfrac{x^2\sqrt{x}+x^2-x-\sqrt{x}-\left(x^2\sqrt{x}-x^2+x-\sqrt{x}\right)}{x^2-x}\right).\dfrac{x-1}{2\left(\sqrt{x}-1\right)^2}\)
\(=\left(\dfrac{x^2\sqrt{x}+x^2-x-\sqrt{x}-x^2\sqrt{x}+x^2-x+\sqrt{x}}{x^2-x}\right).\dfrac{x-1}{2\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{2x^2-2x}{x^2-x}.\dfrac{x-1}{2\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{2\left(x^2-x\right)}{x^2-x}.\dfrac{x-1}{2\left(\sqrt{x}-1\right)^2}\)
\(=2.\dfrac{x-1}{2\left(\sqrt{x}-1\right)^2}=\dfrac{x-1}{\left(\sqrt{x}-1\right)^2}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b. \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\dfrac{2}{\sqrt{x}-1}\)
Để A có giá trị nguyên \(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}\in Z\) \(\Leftrightarrow2⋮\left(\sqrt{x}-1\right)\)\(\Leftrightarrow\left(\sqrt{x}-1\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)\(\Leftrightarrow\sqrt{x}\in\left\{2;0;3;-1\right\}\)
Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}\in\left\{2;0;3\right\}\Leftrightarrow x\in\left\{4;0;9\right\}\)
Vậy để A có giá trị nguyên thì \(x\in\left\{4;0;9\right\}\)
a: \(P=\left(\dfrac{2+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b: Để P nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)
hay \(x\in\left\{0;4;9\right\}\)
Lời giải:
ĐKXĐ: $x>0; x\neq 4$
Sửa lại đề 1 chút.
\(A=\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right).\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{\sqrt{x}-2+\sqrt{x}+2}{(\sqrt{x}+2)(\sqrt{x}-2)}.\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{\sqrt{x}-2}{\sqrt{x}}\)
\(=\frac{2}{\sqrt{x}+2}\)
\(B=\frac{7}{3}A=\frac{14}{3(\sqrt{x}+2)}\)
Với mọi $x>0$ thì hiển nhiên $B>0$. Mặt khác, $\sqrt{x}+2\geq 2$ nên $B=\frac{14}{3(\sqrt{x}+2)}\leq \frac{14}{6}=\frac{7}{3}$
Vậy $0< B\leq \frac{7}{3}$. $B$ đạt giá trị nguyên thì $B=1;2$
$B=1\Leftrightarrow \frac{14}{3(\sqrt{x}+2)}=1$
$\Leftrightarrow x=\frac{64}{9}$ (thỏa mãn)
$B=2\Leftrightarrow \frac{14}{3(\sqrt{x}+2)}=2$
$\Leftrightarrow x=\frac{1}{9}$ (thỏa mãn)
a: ĐKXĐ: x>0; x<>1
b: \(A=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{x-1}\)
c: A nguyên
=>x-1 thuộc {1;-1;2;-2}
=>x thuộc {2;3}
Lời giải:
ĐK: $x\geq 0; x\neq 4; x\neq 9$
a)
\(P=\frac{2\sqrt{x}-9}{(\sqrt{x}-3)(\sqrt{x}-2)}+\frac{(2\sqrt{x}+1)(\sqrt{x}-2)}{(\sqrt{x}-3)(\sqrt{x}-2)}-\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-2)}\)
\(=\frac{2\sqrt{x}-9+(2\sqrt{x}+1)(\sqrt{x}-2)-(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-2)}=\frac{x-\sqrt{x}-2}{(\sqrt{x}-3)(\sqrt{x}-2)}\)
\(=\frac{(\sqrt{x}-2)(\sqrt{x}+1)}{(\sqrt{x}-3)(\sqrt{x}-2)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b) \(P=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Với $x$ nguyên, để $P$ nguyên thì $\sqrt{x}-3$ phải là ước nguyên của $4$
Mà $\sqrt{x}-3\geq -3$ nên:
$\Rightarrow \sqrt{x}-3\in\left\{\pm 1;\pm 2;4\right\}$
$\Rightarrow x\in \left\{4;16;1;25;49\right\}$ (đều thỏa mãn.
a) \(ĐK:x>0,x\ne1\)\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2}{x-1}\)
b) \(P=\dfrac{2}{x-1}\in Z\)
\(\Rightarrow x-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Kết hợp với đk
\(\Rightarrow x\in\left\{0;2;3\right\}\)
a)A=\(\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{-2}\)
=\(\dfrac{-2\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{-2}\)
=\(\dfrac{2\sqrt{x}+1}{\sqrt{x}-1}\)
b)Ta có A = \(\dfrac{2\sqrt{x}+1}{\sqrt{x}-1}\)=2+\(\dfrac{2}{\sqrt{x}-1}\)
Để A nguyên thì \(\sqrt{x}-1\)∈Ư(2)
⇒x∈{4;0;9}