Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai biết cách làm, làm ơn ghi rõ ra dùm mik nhe. Cảm ơn nhiều trước.
a)\(\left[6.\left(-\frac{1}{3}\right)^2-3\left(-\frac{1}{3}\right)+1\right]:\left(-\frac{1}{3}-1\right)\)
\(=\frac{\left[6\left(-\frac{1}{3}\right)^2+3\left(-\frac{1}{3}\right)+1\right]}{-\frac{1}{3}}-\frac{\left[6\left(-\frac{1}{3}\right)^2-3\left(-\frac{1}{3}\right)+1\right]}{-1}\)
\(=\frac{6\left(-\frac{1}{3}\right)^2}{-\frac{1}{3}}+\frac{3\left(-\frac{1}{3}\right)}{-\frac{1}{3}}-\frac{1}{\frac{1}{3}}+6\left(-\frac{1}{3}\right)^2-3\left(-\frac{1}{3}\right)+1\)
\(=6\left(-\frac{1}{3}\right)+3-3+\frac{6.1}{9}+\frac{3}{3}+1\)
\(=-2+3-3+\frac{2}{3}+1+1=\frac{2}{3}\)
\(\left(\frac{1}{2}-\frac{1}{3}\right).6^x+6^{x+2}\)=\(6^{15}+6^{18}\)
\(\frac{1}{6}.6^x+6^{x+2}=6^{15}+6^{18}\)
\(6^{x-1}+6^{x+2}=6^{15}+6^{18}\)
\(6^{x-1}.\left(1+6^3\right)=6^{15}.\left(1+6^3\right)\)
\(6^{x-1}=6^{15}\)
=> \(x-1=15\)
=> \(x\) \(=16\)
Vậy x=16
chúc bn học tốt!
\(B=\left(\frac{-1}{6}\right).\left(\frac{-15}{19}\right).\left(\frac{38}{45}\right)\)
\(B=\frac{\left(-1\right).\left(-15\right).2.19}{2.3.19.15.3}\)
\(B=\frac{1.15.2.19}{2.3.19.15.3}\)
\(B=\frac{1}{9}\)
\(B=\left(\frac{-1}{6}\right).\left(\frac{-15}{19}\right).\left(\frac{38}{45}\right)\)
\(=\frac{570}{5130}=\frac{1}{9}\)
\(M=\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{17}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}\)
\(M=\frac{\left(\frac{1}{30}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{24}{119}+\frac{3}{35}\right).\frac{-4}{3}}\)
\(M=\frac{\frac{-19}{60}.\frac{5}{19}}{\frac{171}{595}.\frac{-4}{3}}\)
\(M=\frac{-1}{12}:\frac{-228}{595}\)
\(M=\frac{595}{2736}\)
Ta có:
\(M=\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right)\times\frac{5}{19}}{\left(\frac{1}{17}+\frac{1}{7}-\frac{-3}{35}\right)\times\frac{-4}{3}}\)
\(M=\frac{\left(\frac{1}{30}-\frac{7}{20}\right)\times\frac{5}{19}}{\left(\frac{24}{119}+\frac{3}{35}\right)\times\frac{-4}{3}}\)
\(M=\frac{\frac{-19}{60}\times\frac{5}{19}}{\frac{171}{595}\times\frac{-4}{3}}\)
\(M=\frac{-1}{12}\div\frac{-228}{595}\)
\(M=\frac{595}{2736}\)
Vậy \(M=\frac{595}{2736}\)
\(\frac{-1}{6}.\frac{-15}{19}.\frac{38}{45}\)
\(\frac{\left(-1\right).\left(-15\right).2.19}{2.3.19.3.15}\)
\(=\frac{1}{3.3}=\frac{1}{9}\)
\(\left(-\frac{1}{6}\right).\left(-\frac{15}{19}\right).\frac{38}{45}\)
\(=\frac{\left(-1\right).\left(-15\right).38}{6.19.45}=\frac{1.15.38}{6.19.45}\)
\(=\frac{1.1.1}{3.1.3}=\frac{1}{9}\)